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1 Introduction

Action principles are widely used to express the laws of physics, including those of
general relativity. For example, freely falling particles move along geodesics, or curves
of extremal path length.

Symmetry transformations are changes in the coordinates or variables that leave the
action invariant. It is well known that continuous symmetries generate conservation laws
(Noether’s Theorem). Conservation laws are of fundamental importance in physics and
so it is valuable to investigate symmetries of the action.

It is useful to distinguish between two types of symmetries: dynamical symmetries
corresponding to some inherent property of the matter or spacetime evolution (e.g. the
metric components being independent of a coordinate, leading to a conserved momentum
one-form component) and nondynamical symmetries arising because of the way in
which we formulate the action. Dynamical symmetries constrain the solutions of the
equations of motion while nondynamical symmetries give rise to mathematical identities.
These notes will consider both.

An example of a nondynamical symmetry is the parameterization-invariance of the
path length, the action for a free particle:

S[xµ(τ)] =
∫ τ2

τ1
L1 (x

µ(τ), ẋµ(τ), τ) dτ =
∫ τ2

τ1

[

gµν(x)
dxµ

dτ

dxν

dτ

]1/2

dτ . (1)

This action is invariant under arbitrary reparameterization τ → τ ′(τ), implying that any
solution xµ(τ) of the variational problem δS = 0 immediately gives rise to other solutions
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yµ(τ) = xµ(τ ′(τ)). Moreover, even if the action is not extremal with Lagrangian L1 for
some (non-geodesic) curve xµ(τ), it is still invariant under reparameterization of that
curve.

There is another nondynamical symmetry of great importance in general relativity,
coordinate-invariance. Being based on tensors, equations of motion in general relativity
hold regardless of the coordinate system. However, when we write an action involving
tensors, we must write the components of the tensors in some basis. This is because
the calculus of variations works with functions, e.g. the components of tensors, treated
as spacetime fields. Although the values of the fields are dependent on the coordinate
system chosen, the action must be a scalar, and therefore invariant under coordinate
transformations. This is true whether or not the action is extremized and therefore it is
a nondynamical symmetry.

Nondynamical symmetries give rise to special laws called identities. They are distinct
from conservation laws because they hold whether or not one has extremized the action.

The material in these notes is generally not presented in this form in the GR text-
books, although much of it can be found in Misner et al if you search well. Although these
symmetry principles and methods are not needed for integrating the geodesic equation,
they are invaluable in understanding the origin of the contracted Bianchi identities and
stress-energy conservation in the action formulation of general relativity. More broadly,
they are the cornerstone of gauge theories of physical fields including gravity.

Starting with the simple system of a single particle, we will advance to the Lagrangian
formulation of general relativity as a classical field theory. We will discover that, in the
field theory formulation, the contracted Bianchi identities arise from a non-dynamical
symmetry while stress-energy conservation arises from a dynamical symmetry. Along
the way, we will explore Killing vectors, diffeomorphisms and Lie derivatives, the stress-
energy tensor, electromagnetism and charge conservation. We will discuss the role of
continuous symmetries (gauge invariance and diffeomorphism invariance or general co-
variance) for a simple model of a relativistic fluid interacting with electromagnetism and
gravity. Although this material goes beyond what is presented in lecture, it is not very
advanced mathematically and it is recommended reading for students wishing to under-
stand gauge symmetry and the parallels between gravity, electromagnetism, and other
gauge theories.

2 Parameterization-Invariance of Geodesics

The parameterization-invariance of equation (1) may be considered in the broader con-
text of Lagrangian systems. Consider a system with n degrees of freedom — the gen-
eralized coordinates qi — with a parameter t giving the evolution of the trajectory in
configuration space. (In eq. 1, qi is denoted xµ and t is τ .) We will drop the superscript
on qi when it is clear from the context.
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Theorem: If the action S[q(t)] is invariant under the infinitesimal transformation
t→ t+ ε(t) with ε = 0 at the endpoints, then the Hamiltonian vanishes identically.

The proof is straightforward. Given a parameterized trajectory qi(t), we define a new
parameterized trajectory q̄(t) = q(t+ ε). The action is

S[q(t)] =
∫ t2

t1
L(q, q̇, t) dt . (2)

Linearizing q̄(t) for small ε,

q̄(t) = q + q̇ε ,
dq̄

dt
= q̇ +

d

dt
(q̇ε) .

The change in the action under the transformation t→ t+ ε is, to first order in ε,

S[q(t+ ε)]− S[q(t)] =
∫ t2

t1

[

∂L

∂t
ε+

∂L

∂qi
q̇iε+

∂L

∂q̇i
d

dt
(q̇iε)

]

dt

=
∫ t2

t1

[

dL

dt
ε+

(

∂L

∂q̇i
q̇i
)

dε

dt

]

dt

= [Lε]t2t1 +
∫ t2

t1

(

∂L

∂q̇i
q̇i − L

)

dε

dt
dt . (3)

The boundary term vanishes because ε = 0 at the endpoints. Parameterization-invariance
means that the integral term must vanish for arbitrary dε/dt, implying

H ≡ ∂L

∂q̇i
q̇i − L = 0 . (4)

Nowhere did this derivation assume that the action is extremal or that qi(t) satisfy the
Euler-Lagrange equations. Consequently, equation (4) is a nondynamical symmetry.

The reader may easily check that the Hamiltonian H1 constructed from equation
(1) vanishes identically. This symmetry does not mean that there is no Hamiltonian
formulation for geodesic motion, only that the Lagrangian L1 has non-dynamical degrees
of freedom that must be eliminated before a Hamiltonian can be constructed. (A similar
circumstance arises in non-Abelian quantum field theories, where the non-dynamical
degrees of freedom are called Faddeev-Popov ghosts.) This can be done by replacing the
parameter with one of the coordinates, reducing the number of degrees of freedom in the
action by one. It can also be done by changing the Lagrangian to one that is no longer
invariant under reparameterizations, e.g. L2 =

1
2
gµν ẋ

µẋν . In this case, ∂L2/∂τ = 0 leads
to a dynamical symmetry, H2 =

1
2
gµνpµpν = constant along trajectories which satisfy the

equations of motion.
The identity H1 = 0 is very different from the conservation law H2 = constant arising

from a time-independent Lagrangian. The conservation law holds only for solutions of the
equations of motion; by contrast, when the action is parameterization-invariant, H1 = 0
holds for any trajectory. The nondynamical symmetry therefore does not constrain the
motion.
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3 Generalized Translational Symmetry

Continuing with the mechanical analogy of Lagrangian systems exemplified by equation
(2), in this section we consider translations of the configuration space variables. If the
Lagrangian is invariant under the translation qi(t) → qi(t) + ai for constant ai, then
pia

i is conserved along trajectories satisfying the Euler-Lagrange equations. This well-
known example of translational invariance is the prototypical dynamical symmetry, and
it follows directly from the Euler-Lagrange equations. In this section we generalize the
concept of translational invariance by considering spatially-varying shifts and coordinate
transformations that leave the action invariant. Along the way we will introduce several
important new mathematical concepts.

In flat spacetime it is common to perform calculations in one reference frame with
a fixed set of coordinates. In general relativity there are no preferred frames or coordi-
nates, which can lead to confusion unless one is careful. The coordinates of a trajectory
may change either because the trajectory has been shifted or because the underlying
coordinate system has changed. The consequences of these alternatives are very dif-
ferent: under a coordinate transformation the Lagrangian is a scalar whose form and
value are unchanged, while the Lagrangian can change when a trajectory is shifted. The
Lagrangian is always taken to be a scalar in order to ensure local Lorentz invariance (no
preferred frame of reference). In this section we will carefully sort out the effects of both
shifting the trajectory and transforming the coordinates in order to identify the under-
lying symmetries. As we will see, conservation laws arise when shifting the trajectory is
equivalent to a coordinate transformation.

We consider a general, relativistically covariant Lagrangian for a particle, which de-
pends on the velocity, the metric, and possibly on additional fields:

S[x(τ)] =
∫ τ2

τ1
L(gµν , Aµ, . . . , ẋ

µ) dτ . (5)

Note that the coordinate-dependence occurs in the fields gµν(x) and Aµ(x). An example
of such a Lagrangian is

L =
1

2
gµν ẋ

µẋν + qAµẋ
µ . (6)

The first piece is the quadratic Lagrangian L2 that gives rise to the geodesic equation.
The additional term gives rise to a non-gravitational force. The Euler-Lagrange equation
for this Lagrangian is

D2xµ

dτ 2
= qF µ

ν

dxν

dτ
, Fµν = ∂µAν − ∂νAµ = ∇µAν −∇νAµ . (7)

We see that the non-gravitational force is the Lorentz force for a charge q, assuming
that the units of the affine parameter τ are chosen so that dxµ/dτ is the 4-momentum
(i.e. mdτ is proper time for a particle of mass m). The one-form field Aµ(x) is the
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Figure 1: A vector field and its integral curves.

electromagnetic potential. We will retain the electromagnetic interaction term in the
Lagrangian in the presentation that follows in order to illustrate more broadly the effects
of symmetry.

Symmetry appears only when a system is changed. Because L is a scalar, coordinate
transformations for a fixed trajectory change nothing and therefore reveal no symmetry.
So let us try changing the trajectory itself. Keeping the coordinates (and therefore
the metric and all other fields) fixed, we will shift the trajectory along the integral

curves of some vector field ξµ(x). (Here ~ξ is any vector field.) As we will see, a vector
field provides a one-to-one mapping of the manifold back to itself, providing a natural
translation operator in curved spacetime.

Figure 1 shows a vector field and its integral curves xµ(λ, τ) where τ labels the curve

and λ is a parameter along each curve. Any vector field ~ξ(x) has a unique set of integral

curves whose tangent vector is ∂xµ/∂λ = ξµ(x). If we think of ~ξ(x) as a fluid velocity
field, then the integral curves are streamlines, i.e. the trajectories of fluid particles.

The integral curves of a vector field provide a continuous one-to-one mapping of the
manifold back to itself, called a pushforward. (The mapping is one-to-one because the
integral curves cannot intersect since the tangent is unique at each point.) Figure 2
illustrates the pushforward. This mapping associates each point on the curve xµ(τ) with
a corresponding point on the curve yµ(τ). For example, the point P0 (λ = 0, τ = 3)
is mapped to another point P (λ = 1, τ = 3). The mapping x → y is obtained by
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λ=0

λ=1

τ=0 1 2 3 4 5

P0

P

xµ(τ)

yµ(τ)

Figure 2: Using the integral curves of a vector field to shift a curve xµ(τ) to a new curve
yµ(τ). The shift, known as a pushforward, defines a continuous one-to-one mapping of
the space back to itself.

integrating along the vector field ~ξ(x):

∂xµ

∂λ
= ξµ(x) , xµ(λ = 0, τ) ≡ xµ(τ) , yµ(τ) ≡ xµ(λ = 1, τ) . (8)

The shift amount λ = 1 is arbitrary; any shift along the integral curves constitutes a
pushforward. The inverse mapping from y → x is called a pullback.

The pushforward generalizes the simple translations of flat spacetime. A finite trans-
lation is built up by a succession of infinitesimal shifts yµ = xµ + ξµdλ. Because the
vector field ~ξ(x) is a tangent vector field, the shifted curves are guaranteed to reside in
the manifold.

Applying an infinitesimal pushforward yields the action

S[x(τ) + ξ(x(τ))dλ] =
∫ τ2

τ1
L(gµν(x+ ξdλ), Aµ(x+ ξdλ), ẋµ + ξ̇µdλ) dτ . (9)

This is similar to the usual variation xµ → xµ+ δxµ used in deriving the Euler-Lagrange
equations, except that ξ is a field defined everywhere in space (not just on the trajectory)
and we do not require ξ = 0 at the endpoints. Our goal here is not to find a trajectory
that makes the action stationary; rather it is to identify symmetries of the action that
result in conservation laws.

We will ask whether applying a pushforward to one solution of the Euler-Lagrange
equations leaves the action invariant. If so, there is a dynamical symmetry and we
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will obtain a conservation law. Note that our shifts are more general than the uniform
translations and rotations considered in nonrelativistic mechanics and special relativity
(here the shifts can vary arbitrarily from point to point, so long as the transformation
has an inverse), so we expect to find more general conservation laws.

On the face of it, any pushforward changes the action:

S[x(τ)+ ξ(x(τ))dλ] = S[x(τ)]+dλ
∫ τ2

τ1

[

∂L

∂gµν
(∂αgµν)ξ

α +
∂L

∂Aµ

(∂αAµ)ξ
α +

∂L

∂ẋµ

dξµ

dτ

]

dτ .

(10)
It is far from obvious that the term in brackets ever would vanish. However, we have one
more tool to use at our disposal: coordinate transformations. Because the Lagrangian
is a scalar, we are free to transform coordinates. In some circumstances the effect of the
pushforward may be eliminated by an appropriate coordinate transformation, revealing
a symmetry.

We consider transformations of the coordinates xµ → x̄µ(x), where we assume this
mapping is smooth and one-to-one so that ∂x̄µ/∂xα is nonzero and nonsingular every-
where. A trajectory xµ(τ) in the old coordinates becomes x̄µ(x(τ)) ≡ x̄µ(τ) in the new
ones, where τ labels a fixed point on the trajectory independently of the coordinates.

The action depends on the metric tensor, one-form potential and velocity components,
which under a coordinate transformation change to

gµ̄ν̄ = gαβ
∂xα

∂x̄µ

∂xβ

∂x̄ν
, Aµ̄ = Aα

∂xα

∂x̄µ
,

dx̄µ

dτ
=
∂x̄µ

∂xα

dxα

dτ
. (11)

We have assumed that ∂x̄µ/∂xα is invertible. Under coordinate transformations the
action does not even change form (only the coordinate labels change), so coordinate
transformations alone cannot generate any nondynamical symmetries. However, we will
show below that coordinate invariance can generate dynamical symmetries which apply
only to solutions of the Euler-Lagrange equations.

Under a pushforward, the trajectory xµ(τ) is shifted to a different trajectory with
coordinates yµ(τ). After the pushforward, we transform the coordinates to x̄µ(y(τ)).
Because the pushforward is a one-to-one mapping of the manifold to itself, we are free
to choose our coordinate transformation so that x̄ = x, i.e. x̄µ(y(τ)) ≡ x̄µ(τ) = xµ(τ).
In other words, we transform the coordinates so that the new coordinates of the new
trajectory are the same as the old coordinates of the old trajectory. The pushforward
changes the trajectory; the coordinate transformation covers our tracks.

The combination of pushforward and coordinate transformation is an example of a
diffeomorphism. A diffeomorphism is a one-to-one mapping between the manifold and
itself. In our case, the pushforward and transformation depend on one parameter λ and
we have a one-parameter family of diffeomorphisms. After a diffeomorphism, the point
P in Figure 2 has the same values of the transformed coordinates as the point P0 has in
the original coordinates: x̄µ(λ, τ) = xµ(τ).
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Naively, it would seem that a diffeomorphism automatically leaves the action un-
changed because the coordinates of the trajectory are unchanged. However, the La-
grangian depends not only on the coordinates of the trajectory; it also depends on tensor
components that change according to equation (11). More work will be required before
we can tell whether the action is invariant under a diffeomorphism. While a coordinate
transformation by itself does not change the action, in general a diffeomorphism, because
it involves a pushforward, does. A continuous symmetry occurs when a diffeomorphism
does not change the action. This is the symmetry we will be studying.

The diffeomorphism is an important operation in general relativity. We therefore
digress to consider the diffeomorphism in greater detail before returning to examine its
effect on the action.

3.1 Infinitesimal Diffeomorphisms and Lie derivatives

In a diffeomorphism, we shift the point at which a tensor is evaluated by pushing it
forward using a vector field and then we transform (pull back) the coordinates so that
the shifted point has the same coordinate labels as the old point. Since a diffeomor-
phism maps a manifold back to itself, under a diffeomorphism a rank (m,n) tensor is
mapped to another rank (m,n) tensor. This subsection asks how tensors change under
diffeomorphisms.

The pushforward mapping may be symbolically denoted φλ (following Wald 1984,
Appendix C). Thus, a diffeomorphism maps a tensor T(P0) at point P0 to a tensor
T̄(P ) ≡ φλT(P0) such that the coordinate values are unchanged: x̄µ(P ) = xµ(P0). (See
Fig. 2 for the roles of the points P0 and P .) The diffeomorphism may be regarded as an
active coordinate transformation: under a diffeomorphism the spatial point is changed
but the coordinates are not.

We illustrate the diffeomorphism by applying it to the components of the one-form
Ã = Aµẽ

µ in a coordinate basis:

Āµ(P0) ≡ Aα(P )
∂xα

∂x̄µ
(P ) , where x̄µ(P ) = xµ(P0) . (12)

Starting with Aα at point P0 with coordinates xµ(P0), we push the coordinates forward
to point P , we evaluate Aα there, and then we transform the basis back to the coordinate
basis at P with new coordinates x̄µ(P ).

The diffeomorphism is a continuous, one-parameter family of mappings. Thus, a
general diffeomorphism may be obtained from the infinitesimal diffeomorphism with
pushforward yµ = xµ + ξµdλ. The corresponding coordinate transformation is (to first
order in dλ)

x̄µ = xµ − ξµdλ (13)
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so that x̄µ(P ) = xµ(P0). This yields (in the xµ coordinate system)

Āµ(x) ≡ Aα(x+ ξdλ)
∂xα

∂x̄µ
= Aµ(x) + [ξα∂αAµ(x) + Aα(x)∂µξ

α] dλ+O(dλ)2 . (14)

We have inverted the Jacobian ∂x̄µ/∂xα = δµα− ∂αξµdλ to first order in dλ, ∂xα/∂x̄µ =
δαµ + ∂µξ

αdλ + O(dλ)2. In a similar manner, the infinitesimal diffeomorphism of the
metric gives

ḡµν(x) ≡ gαβ(x+ ξdλ)
∂xα

∂x̄µ

∂xβ

∂x̄ν

= gµν(x) + [ξα∂αgµν(x) + gαν(x)∂µξ
α + gµα(x)∂νξ

α] dλ+O(dλ)2 . (15)

In general, the infinitesimal diffeomorphism T̄ ≡ φ∆λT changes the tensor by an
amount first-order in ∆λ and linear in ~ξ. This change allows us to define a linear
operator called the Lie derivative:

LξT ≡ lim
∆λ→0

φ∆λT(x)− T(x)

∆λ
with x̄µ(P ) = xµ(P0) = xµ(P )− ξµ∆λ+O(∆λ)2 . (16)

The Lie derivatives of Aµ(x) and gµν(x) follow from equations (14)–(16):

LξAµ(x) = ξα∂αAµ + Aα∂µξ
α , Lξgµν(x) = ξα∂αgµν + gαν∂µξ

α + gµα∂νξ
α . (17)

The first term of the Lie derivative, ξα∂α, corresponds to the pushforward, shifting a
tensor to another point in the manifold. The remaining terms arise from the coordinate
transformation back to the original coordinate values. As we will show in the next
subsection, this combination of terms makes the Lie derivative a tensor in the tangent
space at xµ.

Under a diffeomorphism the transformed tensor components, regarded as functions
of coordinates, are evaluated at exactly the same numerical values of the transformed
coordinate fields (but a different point in spacetime!) as the original tensor components in
the original coordinates. This point is fundamental to the diffeomorphism and therefore
to the Lie derivative, and distinguishes the latter from a directional derivative. Thinking
of the tensor components as a set of functions of coordinates, we are performing an active
transformation: the tensor component functions are changed but they are evaluated at
the original values of the coordinates. The Lie derivative generates an infinitesimal
diffeomorphism. That is, under a diffeomorphism with pushforward xµ → xµ + ξµdλ,
any tensor T is transformed to T + LξTdλ.

The fact that the coordinate values do not change, while the tensor fields do, dis-
tinguishes the diffeomorphism from a simple coordinate transformation. An important
implication is that, in integrals over spacetime volume, the volume element d4x does not
change under a diffeomorphism, while it does change under a coordinate transformation.
By contrast, the volume element

√−g d4x is invariant under a coordinate transformation
but not under a diffeomorphism.
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3.2 Properties of the Lie Derivative

The Lie derivative Lξ is similar to the directional derivative operator ∇ξ in its properties
but not in its value, except for a scalar where Lξf = ∇ξf = ξµ∂µf . The Lie derivative of
a tensor is a tensor of the same rank. To show that it is a tensor, we rewrite the partial
derivatives in equation (17) in terms of covariant derivatives in a coordinate basis using
the Christoffel connection coefficients to obtain

LξAµ = ξα∇αAµ + Aα∇µξ
α + T α

µβAαξ
β ,

Lξgµν = ξα∇αgµν + gαν∇µξ
α + gµα∇νξ

α + T α
µβgανξ

β + T α
νβgµαξ

β , (18)

where T α
µβ is the torsion tensor, defined by T α

µβ = Γα
µβ − Γα

βµ in a coordinate basis.
The torsion vanishes by assumption in general relativity. Equations (18) show that LξAµ

and Lξgµν are tensors.
The Lie derivative Lξ differs from the directional derivative ∇ξ in two ways. First,

the Lie derivative requires no connection: equation (17) gave the Lie derivative solely
in terms of partial derivatives of tensor components. [The derivatives of the metric
should not be regarded here as arising from the connection; the Lie derivative of any
rank (0, 2) tensor has the same form as Lξgµν in eq. 17.] Second, the Lie derivative

involves the derivatives of the vector field ~ξ while the covariant derivative does not. The
Lie derivative trades partial derivatives of the metric (present in the connection for the
covariant derivative) for partial derivatives of the vector field. The directional derivative

tells how a fixed tensor field changes as one moves through it in direction ~ξ. The Lie
derivative tells how a tensor field changes as it is pushed forward along the integral curves
of ~ξ.

More understanding of the Lie derivative comes from examining the first-order change
in a vector expanded in a coordinate basis under a displacement ~ξdλ:

d ~A = ~A(x+ ξdλ)− ~A(x) = Aµ(x+ ξdλ)~eµ(x+ ξdλ)− Aµ(x)~eµ(x) . (19)

The nature of the derivative depends on how we obtain ~eµ(x + ξdλ) from ~eµ(x). For
the directional derivative ∇ξ, the basis vectors at different points are related by the
connection:

~eµ(x+ ξλ) =
(

δβµ + dλ ξαΓβ
µα

)

~eβ(x) for ∇ξ . (20)

For the Lie derivative Lξ, the basis vector is mapped back to the starting point with

~eµ(x+ ξdλ) =
∂x̄β

∂xµ
~eβ(x) =

(

δβµ − dλ ∂µξ
β
)

~eβ(x) for Lξ . (21)

Similarly, the basis one-form is mapped using

ẽµ(x+ ξdλ) =
∂xµ

∂x̄β
ẽβ(x) =

(

δµβ + dλ ∂βξ
µ
)

ẽβ(x) for Lξ . (22)
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These mappings ensure that d ~A/dλ = Lξ
~A is a tangent vector on the manifold.

The Lie derivative of any tensor may be obtained using the following rules: (1) The
Lie derivative of a scalar field is the directional derivative, Lξf = ξα∂αf = ∇ξf . (2)
The Lie derivative obeys the Liebnitz rule, Lξ(TU) = (LξT )U + T (LξU), where T and
U may be tensors of any rank, with a tensor product or contraction between them. The
Lie derivative commutes with contractions. (3) The Lie derivatives of the basis vectors
are Lξ~eµ = −~eα∂µξα. (4) The Lie derivatives of the basis one-forms are Lξẽ

µ = ẽα∂αξ
µ.

These rules ensure that the Lie derivative of a tensor is a tensor. Using them, the
Lie derivative of any tensor may be obtained by expanding the tensor in a basis, e.g. for
a rank (1, 2) tensor,

LξS = Lξ(S
µ
νκ~eµ ⊗ ẽν ⊗ ẽκ) ≡ (LξS

µ
νκ)~eµ ⊗ ẽν ⊗ ẽκ

= [ξα∂αS
µ
νκ − Sα

νκ∂αξ
µ + Sµ

ακ∂νξ
α + Sµ

να∂κξ
α]~eµ ⊗ ẽν ⊗ ẽκ . (23)

The partial derivatives can be changed to covariant derivatives without change (with
vanishing torsion, the connection coefficients so introduced will cancel each other), con-
firming that the Lie derivative of a tensor really is a tensor.

The Lie derivative of a vector field is an antisymmetric object known also as the
commutator or Lie bracket:

LV
~U = (V µ∂µU

ν − Uµ∂µV
ν)~eν ≡ [~V , ~U ] . (24)

The commutator was introduced in the notes Tensor Calculus, Part 2, Section 2.2. With
vanishing torsion, [~V , ~U ] = ∇V

~U −∇U
~V . Using rule (4) of the Lie derivative given after

equation (22), it follows at once that the commutator of any pair of coordinate basis
vector fields vanishes: [~eµ, ~eν ] = 0.

3.3 Diffeomorphism-invariance and Killing Vectors

Having defined and investigated the properties of diffeomorphisms and the Lie derivative,
we return to the question posed at the beginning of Section 3: How can we tell when the
action is translationally invariant? Equation (10) gives the change in the action under a

generalized translation or pushforward by the vector field ~ξ. However, it is not yet in a
form that highlights the key role played by diffeomorphisms.

To uncover the diffeomorphism we must perform the infinitesimal coordinate trans-
formation given by equation (13). To first order in dλ this has no effect on the dλ term
already on the right-hand side of equation (10) but it does add a piece to the unperturbed
action. Using equation (11) and the fact that the Lagrangian is a scalar, to O(dλ) we
obtain

S[x(τ)] =
∫ τ2

τ1
L(gµν , Aµ, ẋ

µ) dτ =
∫ τ2

τ1
L

(

gαβ
∂xα

∂x̄µ

∂xβ

∂x̄ν
, Aα

∂xα

∂x̄µ
,
dxα

dτ

∂x̄µ

∂xα

)

dτ

= S[x(τ)] + dλ
∫ τ2

τ1

[

∂L

∂gµν
(gαν∂µξ

α + gµα∂νξ
α) +

∂L

∂Aµ

(Aα∂µξ
α)− ∂L

∂ẋµ

dξµ

dτ

]

dτ . (25)
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The integral multiplying dλ always has the value zero for any trajectory xµ(τ) and

vector field ~ξ because of the coordinate-invariance of the action. However, it is a special
kind of zero because, when added to the pushforward term of equation (10), it gives a
diffeomorphism:

S[x(τ) + ξ(x(τ))dλ] = S[x(τ)] + dλ
∫ τ2

τ1

[

∂L

∂gµν
Lξgµν +

∂L

∂Aµ

LξAµ

]

dτ . (26)

If the action contains additional fields, under a diffeomorphism we obtain a Lie derivative
term for each field.

Thus, we have answered the question of translation-invariance: the action is transla-
tionally invariant if and only if the Lie derivative of each tensor field appearing in the
Lagrangian vanishes. The uniform translations of Newtonian mechanics are generalized
to diffeomorphisms, which include translations, rotations, boosts, and any continuous,
one-to-one mapping of the manifold back to itself.

In Newtonian mechanics, translation-invariance leads to a conserved momentum.
What about diffeomorphism-invariance? Does it also lead to a conservation law?

Let us suppose that the original trajectory xµ(τ) satisfies the equations of motion
before being pushed forward, i.e. the action, with Lagrangian L(gµν(x), Aµ, ẋ

µ), is sta-
tionary under first-order variations xµ → xµ + δxµ(x) with fixed endpoints δxµ(τ1) =
δxµ(τ2) = 0. From equation (26) it follows that the action for the shifted trajectory is
also stationary, if and only if Lξgµν = 0 and LξAµ = 0. (When the trajectory is varied
xµ → xµ + δxµ, cross-terms ξδx are regarded as being second-order and are ignored.)

If there exists a vector field ~ξ such that Lξgµν = 0 and LξAµ = 0, then we can

shift solutions of the equations of motion along ~ξ(x(τ)) and generate new solutions.
This is a new continuous symmetry called diffeomorphism-invariance, and it generalizes
translational-invariance in Newtonian mechanics and special relativity. The result is a
dynamical symmetry, which may be deduced by rewriting equation (26):

lim
∆λ→0

S[x(τ) + ξ(x(τ))∆λ]− S[x(τ)]

∆λ
=

∫ τ2

τ1

[

∂L

∂gµν
Lξgµν +

∂L

∂Aµ

LξAµ

]

dτ

=
∫ τ2

τ1

[

∂L

∂xα
ξα +

∂L

∂ẋµ

dξµ

dτ

]

dτ

=
∫ τ2

τ1

[

d

dτ

(

∂L

∂ẋµ

)

ξµ +
∂L

∂ẋµ

dξµ

dτ

]

dτ

=
∫ τ2

τ1

[

d

dτ
(pµξ

µ)

]

dτ

= [pµξ
µ]τ2τ1 . (27)

All of the steps are straightforward aside from the second line. To obtain this we first
expanded the Lie derivatives using equation (17). The terms multiplying ξα were then
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combined to give ∂L/∂xα (regarding the Lagrangian as a function of xµ and ẋµ). For
the terms multiplying the gradient ∂µξ

α, we used dξµ(x(τ))/dτ = ẋα∂αξ
µ combined

with equation (6) to convert partial derivatives of L with respect to the fields gµν and
Aµ to partial derivatives with respect to ẋµ. (This conversion is dependent on the
Lagrangian, of course, but works for any Lagrangian that is a function of gµν ẋ

µẋν and
Aµẋ

µ.) To obtain the third line we used the assumption that xµ(τ) is a solution of the
Euler-Lagrange equations. To obtain the fourth line we used the definition of canonical
momentum,

pµ ≡
∂L

∂ẋµ
. (28)

For the Lagrangian of equation (6), pµ = gµν ẋ
ν + qAµ is not the mechanical momentum

(the first term) but also includes a contribution from the electromagnetic field.
Nowhere in equation (27) did we assume that ξµ vanishes at the endpoints. The

vector field ~ξ is not just a variation used to obtain equations of motion, nor is it a
constant; it is an arbitrary small shift.

Theorem: If the Lagrangian is invariant under the diffeomorphism generated by a
vector field ~ξ, then p̃(~ξ ) = pµξ

µ is conserved along curves that extremize the action, i.e.
for trajectories obeying the equations of motion.

This result is a generalization of conservation of momentum. The vector field ~ξ may
be thought of as the coordinate basis vector field for a cyclic coordinate, i.e. one that does
not appear in the Lagrangian. In particular, if ∂L/∂xα = 0 for a particular coordinate
xα (e.g. α = 0), then L is invariant under the diffeomorphism generated by ~eα so that
pα is conserved.

When gravity is the only force acting on a particle, diffeomorphism-invariance has
a purely geometric interpretation in terms of special vector fields known as Killing vec-
tors. Using equation (18) for a manifold with a metric-compatible connection (implying
∇αgµν = 0) and vanishing torsion (both of these are true in general relativity), we find
that diffeomorphism-invariance implies

Lξgµν = ∇µξν +∇νξµ = 0 . (29)

This equation is known as Killing’s equation and its solutions are called Killing vector
fields, or Killing vectors for short. Thus, our theorem may be restated as follows: If the
spacetime has a Killing vector ~ξ(x), then pµξ

µ is conserved along any geodesic. A much
shorter proof of this theorem follows from ∇V (pµξ

µ) = ξµ∇V pµ + pµV
ν∇νξ

µ. The first
term vanishes by the geodesic equation, while the second term vanishes from Killing’s
equation with pµ ∝ V µ. Despite being longer, however, the proof based on the Lie
derivative is valuable because it highlights the role played by a continuous symmetry,
diffeomorphism-invariance of the metric.

One is not free to choose Killing vectors; general spacetimes (i.e. ones lacking sym-
metry) do not have any solutions of Killing’s equation. As shown in Appendix C.3 of
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Wald (1984), a 4-dimensional spacetime has at most 10 Killing vectors. The Minkowski
metric has the maximal number, corresponding to the Poincaré group of transforma-
tions: three rotations, three boosts, and four translations. Each Killing vector gives a
conserved momentum.

The existence of a Killing vector represents a symmetry: the geometry of spacetime as
represented by the metric is invariant as one moves in the ~ξ-direction. Such a symmetry
is known as an isometry. In the perturbation theory view of diffeomorphisms, isometries
correspond to perturbations of the coordinates that leave the metric unchanged.

Any vector field can be chosen as one of the coordinate basis fields; the coordinate
lines are the integral curves. In Figure 2, the integral curves were parameterized by
λ, which becomes the coordinate whose corresponding basis vector is ~eλ ≡ ~ξ(x). For

definiteness, let us call this coordinate λ = x0. If ~ξ = ~e0 is a Killing vector, then x0 is
a cyclic coordinate and the spacetime is stationary: ∂0gµν = 0. In such spacetimes, and
only in such spacetimes, p0 is conserved along geodesics (aside from special cases like
the Robertson-Walker spacetimes, where p0 is conserved for massless but not massive
particles because the spacetime is conformally stationary).

Another special feature of spacetimes with Killing vectors is that they have a con-
served 4-vector energy-current Sν = ξµT

µν . Local stress-energy conservation ∇µT
µν = 0

then implies ∇νS
ν = 0, which can be integrated over a volume to give the usual form

of an integral conservation law. Conversely, spacetimes without Killing vectors do not
have an tensor integral energy conservation law, except for spacetimes that are asymp-
totically flat at infinity. (However, all spacetimes have a conserved energy-momentum
pseudotensor, as discussed in the notes Stress-Energy Pseudotensors and Gravitational

Radiation Power.)

4 Einstein-Hilbert Action for the Metric

We have seen that the action principle is useful not only for concisely expressing the
equations of motion; it also enables one to find identities and conservation laws from
symmetries of the Lagrangian (invariance of the action under transformations). These
methods apply not only to the trajectories of individual particles. They are readily
generalized to spacetime fields such as the electromagnetic four-potential Aµ and, most
significantly in GR, the metric gµν itself.

To understand how the action principle works for continuous fields, let us recall how it
works for particles. The action is a functional of configuration-space trajectories. Given
a set of functions qi(t), the action assigns a number, the integral of the Lagrangian
over the parameter t. For continuous fields the configuration space is a Hilbert space,
an infinite-dimensional space of functions. The single parameter t is replaced by the
full set of spacetime coordinates. Variation of a configuration-space trajectory, qi(t) →
qi(t)+ δqi(t), is generalized to variation of the field values at all points of spacetime, e.g.
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gµν(x)→ gµν(x) + δgµν(x). In both cases, the Lagrangian is chosen so that the action is
stationary for trajectories (or field configurations) that satisfy the desired equations of
motion. The action principle concisely specifies those equations of motion and facilitates
examination of symmetries and conservation laws.

In general relativity, the metric is the fundamental field characterizing the geometric
and gravitational properties of spacetime, and so the action must be a functional of
gµν(x). The standard action for the metric is the Hilbert action,

SG[gµν(x)] =
∫ 1

16πG
gµνRµν

√−g d4x . (30)

Here, g = det gµν and Rµν = Rα
µαν is the Ricci tensor. The factor

√−g makes the volume
element invariant so that the action is a scalar (invariant under general coordinate trans-
formations). The Einstein-Hilbert action was first shown by the mathematician David
Hilbert to yield the Einstein field equations through a variational principle. Hilbert’s
paper was submitted five days before Einstein’s paper presenting his celebrated field
equations, although Hilbert did not have the correct field equations until later (for an
interesting discussion of the historical issues see L. Corry et al., Science 278, 1270, 1997).

(The Einstein-Hilbert action is a scalar under general coordinate transformations.
As we will show in the notes Stress-Energy Pseudotensors and Gravitational Radiation

Power, it is possible to choose an action that, while not a scalar under general coor-
dinate transformations, still yields the Einstein field equations. The action considered
there differs from the Einstein-Hilbert action by a total derivative term. The only real
invariance of the action that is required on physical grounds is local Lorentz invariance.)

In the particle actions considered previously, the Lagrangian depended on the gen-
eralized coordinates and their first derivatives with respect to the parameter τ . In a
spacetime field theory, the single parameter τ is expanded to the four coordinates xµ. If
it is to be a scalar, the Lagrangian for the spacetime metric cannot depend on the first
derivatives ∂αgµν , because ∇αgµν = 0 and the first derivatives can all be transformed to
zero at a point. Thus, unless one drops the requirement that the action be a scalar under
general coordinate transformations, for gravity one is forced to go to second derivatives
of the metric. The Ricci scalar R = gµνRµν is the simplest scalar that can be formed
from the second derivatives of the metric. Amazingly, when the action for matter and
all non-gravitational fields is added to the simplest possible scalar action for the metric,
the least action principle yields the Einstein field equations.

To look for symmetries of the Einstein-Hilbert action, we consider its change under
variation of the functions gµν(x) with fixed boundary hypersurfaces (the generalization
of the fixed endpoints for an ordinary Lagrangian). It proves to be simpler to regard
the inverse metric components gµν as the field variables. The action depends explicitly
on gµν and the Christoffel connection coefficients, Γα

µν , the latter appearing in the Ricci
tensor in a coordinate basis:

Rµν = ∂αΓ
α
µν − ∂µΓ

α
αν + Γα

µνΓ
β
αβ − Γα

βµΓ
β
αν . (31)
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Lengthy algebra shows that first-order variations of gµν produce the following changes
in the quantities appearing in the Einstein-Hilbert action:

δ
√−g = −1

2

√−g gµνδgµν = +
1

2

√−g gµνδgµν ,

δΓα
µν = −1

2

[

∇µ(gνλδg
αλ) +∇ν(gµλδg

αλ)−∇β(gµκgνλg
αβδgκλ)

]

,

δRµν = ∇α(δΓ
α
µν)−∇µ(δΓ

α
αν) ,

gµνδRµν = ∇µ∇ν

(

−δgµν + gµνgαβδg
αβ
)

,

δ(gµνRµν

√−g) = (Gµνδg
µν + gµνδRµν)

√−g , (32)

where Gµν = Rµν − 1
2
Rgµν is the Einstein tensor. The covariant derivative ∇µ appearing

in these equations is taken with respect to the zeroth-order metric gµν . Note that,
while Γα

µν is not a tensor, δΓα
µν is. Note also that the variations we perform are not

necessarily diffeomorphisms (that is, δgµν is not necessarily a Lie derivative), although
diffeomorphisms are variations of just the type we are considering (i.e. variations of
the tensor component fields for fixed values of their arguments). Equations (32) are
straightforward to derive but take several pages of algebra.

Equations (32) give us the change in the gravitational action under variation of the
metric:

δSG ≡ SG[g
µν + δgµν ]− SG[g

µν ]

=
1

16πG

∫

(Gµνδg
µν +∇µv

µ)
√−g d4x , vµ ≡ ∇ν(−δgµν + gµνgαβδg

αβ) .(33)

Besides the desired Einstein tensor term, there is a divergence term arising from gµνδRµν =
∇µv

µ which can be integrated using the covariant Gauss’ law. This term raises the ques-
tion of what is fixed in the variation, and what the endpoints of the integration are.

In the action principle for particles (eq. 2), the endpoints of integration are fixed
time values, t1 and t2. When we integrate over a four-dimensional volume, the endpoints
correspond instead to three-dimensional hypersurfaces. The simplest case is when these
are hypersurfaces of constant t, in which case the boundary terms are integrals over
spatial volume.

In equation (33), the divergence term can be integrated to give the flux of vµ through
the bounding hypersurface. This term involves the derivatives of δgµν normal to the
boundary (e.g. the time derivative of δgµν , if the endpoints are constant-time hyper-
surfaces), and is therefore inconvenient because the usual variational principle sets δgµν

but not its derivatives to zero at the endpoints. One may either revise the variational
principle so that gµν and Γα

µν are independently varied (the Palatini action), or one can
add a boundary term to the Einstein-Hilbert action, involving a tensor called the extrin-
sic curvature, to cancel the ∇µv

µ term (Wald, Appendix E.1). In the following we will
ignore this term, understanding that it can be eliminated by a more careful treatment.
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(The Schrödinger action presented in the later notes Stress-Energy Pseudotensors and

Gravitational Radiation Power eliminates the ∇µv
µ term.)

For convenience below, we introduce a new notation for the integrand of a functional
variation, the functional derivative δS/δψ, defined by

δS[ψ] ≡
∫

(

δS

δψ

)

δψ
√−g d4x . (34)

Here, ψ is any tensor field, e.g. gµν . The functional derivative is strictly defined only
when there are no surface terms arising from the variation. Neglecting the surface term
in equation (33), we see that δSG/δg

µν = (16πG)−1Gµν .

4.1 Stress-Energy Tensor and Einstein Equations

To see how the Einstein equations arise from an action principle, we must add to SG

the action for matter, the source of spacetime curvature. Here, “matter” refers to all
particles and fields excluding gravity, and specifically includes all the quarks, leptons
and gauge bosons in the world (excluding gravitons). At the classical level, one could
include electromagnetism and perhaps a simplified model of a fluid. The total action
would become a functional of the metric and matter fields. Independent variation of each
field yields the equations of motion for that field. Because the metric implicitly appears
in the Lagrangian for matter, matter terms will appear in the equation of motion for the
metric. This section shows how this all works out for the simplest model for matter, a
classical sum of massive particles.

Starting from equation (1), we sum the actions for a discrete set of particles, weighting
each by its mass:

SM =
∑

a

∫

−ma

(

−g00 − 2g0iẋ
i
a − gijẋ

i
aẋ

j
a

)1/2
dt . (35)

The subscript a labels each particle. We avoid the problem of having no global proper
time by parameterizing each particle’s trajectory by the coordinate time. Variation of
each trajectory, xi

a(t)→ xi
a(t) + δxi

a(t) for particle a with ∆SM = 0, yields the geodesic
equations of motion.

Now we wish to obtain the equations of motion for the metric itself, which we do by
combining the gravitational and matter actions and varying the metric. After a little
algebra, equation (33) gives the variation of SG; we must add to it the variation of SM.
Equation (35) gives

δSM =
∫

dt
∑

a

1

2
ma

V µ
a V

ν
a

V 0
a

δgµν(x
i
a(t), t) =

∫

dt
∑

a

−1

2
ma

VaµVaν

V 0
a

δgµν(xi
a(t), t) . (36)

Variation of the metric naturally gives the normalized 4-velocity for each particle, V µ
a =

dxµ/dτa with VaµV
µ
a = −1, with a correction factor 1/V 0

a = dτa/dt. Now, if we are
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to combine equations (33) and (36), we must modify the latter to get an integral over
4-volume. This is easily done by inserting a Dirac delta function. The result is

δSM = −
∫

[

1

2

∑

a

ma√−g
VaµVaν

V 0
a

δ3(xi − xi
a(t))

]

δgµν(x)
√−g d4x . (37)

The term in brackets may be rewritten in covariant form by inserting an integral over
affine parameter with a delta function to cancel it,

∫

dτa δ(t− t(τa))(dt/dτa). Noting that
V 0
a = dt/dτa, we get

δSM = −
∫ 1

2
Tµνδg

µν(x)
√−g d4x = +

∫ 1

2
T µνδgµν(x)

√−g d4x , (38)

where the functional differentiation has naturally produced the stress-energy tensor for
a gas of particles,

T µν = 2
δSM

δgµν
=
∑

a

∫

dτa
δ4(x− x(τa))√−g maV

µ
a V

ν
a . (39)

Aside from the factor
√−g needed to correct the Dirac delta function for non-flat coor-

dinates (because
√−g d4x is the invariant volume element), equation (39) agrees exactly

with the stress-energy tensor worked out in the 8.962 notes Number-Flux Vector and

Stress-Energy Tensor.
Equation (38) is a general result, and we take it as the definition of the stress-energy

tensor for matter (cf. Appendix E.1 of Wald). Thus, given any action SM for particles
or fields (matter), we can vary the coordinates or fields to get the equations of motion
and vary the metric to get the stress-energy tensor,

T µν ≡ 2
δSM

δgµν
. (40)

Taking the action to be the sum of SG and SM, requiring it to be stationary with
respect to variations δgµν , now gives the Einstein equations:

Gµν = 8πGTµν . (41)

The pre-factor (16πG)−1 on SG was chosen to get the correct coefficient in this equation.
The matter action is conventionally normalized so that it yields the stress-energy tensor
as in equation (38).

4.2 Diffeomorphism Invariance of the Einstein-Hilbert Action

We return to the variation of the Einstein-Hilbert action, equation (33) without the
surface term, and consider diffeomorphisms δgµν = Lξg

µν :

16πG δSG =
∫

Gµν(Lξg
µν)
√−g d4x = −2

∫

Gµν(∇µξν)
√−g d4x . (42)
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Here, ~ξ is not a Killing vector; it is an arbitrary small coordinate displacement. The Lie
derivative Lξg

µν has been rewritten in terms of −Lξgµν using gµαgαν = δµν . Note that
diffeomorphisms are a class of field variations that correspond to mapping the manifold
back to itself. Under a diffeomorphism, the integrand of the Einstein-Hilbert action
is varied, including the

√−g factor. However, as discussed at the end of §3.1, the
volume element d4x is fixed under a diffeomorphism even though it does change under
coordinate transformations. The reason for this is apparent in equation (16): under
a diffeomorphism, the coordinate values do not change. The pushforward cancels the
transformation. If we simply performed either a passive coordinate transformation or
pushforward alone, d4x would not be invariant. Under a diffeomorphism the variation
δgµν = Lξgµν is a tensor on the “unperturbed background” spacetime with metric gµν .

We now show that any scalar integral is invariant under a diffeomorphism that van-
ishes at the endpoints of integration. Consider the integrand of any action integral,
Ψ
√−g, where Ψ is any scalar constructed out of the tensor fields of the problem; e.g.

Ψ = R/(16πG) for the Hilbert action. From the first of equations (32) and the Lie
derivative of the metric,

Lξ

√−g =
1

2

√−g gµνLξgµν = (∇αξ
α)
√−g . (43)

Using the fact that the Lie derivative of a scalar is the directional derivative, we obtain

δS =
∫

Lξ(Ψ
√−g) d4x =

∫

(ξµ∇µΨ+Ψ∇µξ
µ)
√−g d4x =

∫

Ψξµ d3Σµ . (44)

We have used the covariant form of Gauss’ law, for which d3Σµ is the covariant hyper-
surface area element for the oriented boundary of the integrated 4-volume. Physically
it represents the difference between the spatial volume integrals at the endpoints of
integration in time.

For variations with ξµ = 0 on the boundaries, δS = 0. The reason for this is
simple: diffeomorphism corresponds exactly to reparameterizing the manifold by shifting
and relabeling the coordinates. Just as the action of equation (1) is invariant under
arbitrary reparameterization of the path length with fixed endpoints, a spacetime field
action is invariant under reparameterization of the coordinates (with no shift on the
boundaries). The diffeomorphism differs from a standard coordinate transformation in
that the variation is made so that d4x is invariant rather than

√−g d4x, but the result
is the same: scalar actions are diffeomorphism-invariant.

In considering diffeomorphisms, we do not assume that gµν extremizes the action.
Thus, using δSG = 0 under diffeomorphisms, we will get an identity rather than a
conservation law.

Integrating equation (42) by parts using Gauss’s law gives

8πG δSG = −
∫

Gµνξν d
3Σµ +

∫

ξν∇µG
µν√−g d4x . (45)

19



Under reparameterization, the boundary integral vanishes and δSG = 0 from above, but
ξν is arbitrary in the 4-volume integral. Therefore, diffeomorphism-invariance implies

∇µG
µν = 0 . (46)

Equation (46) is the famous contracted Bianchi identity. Mathematically, it is an
identity akin to equation (4). It may also be regarded as a geometric property of the
Riemann tensor arising from the full Bianchi identities,

∇σR
α
βµν +∇µR

α
βνσ +∇νR

α
βσµ = 0 . (47)

Contracting on α and µ, then multiplying by gσβ and contracting again gives equation
(46). One can also explicitly verify equation (46) using equation (31), noting that Gµν =
Rµν − 1

2
Rgµν and Rµν = gµαgνβRαβ. Wald gives a shorter and more sophisticated proof

in his Section 3.2; an even shorter proof can be given using differential forms (Misner
et al chapter 15). Our proof, based on diffeomorphism-invariance, is just as rigorous
although quite different in spirit from these geometric approaches.

The next step is to inquire whether diffeomorphism-invariance can be used to obtain
true conservation laws and not just offer elegant derivations of identities. Before answer-
ing this question, we digress to explore an analogous symmetry in electromagnetism.

4.3 Gauge Invariance in Electromagnetism

Maxwell’s equations can be obtained from an action principle by adding two more terms
to the total action. In SI units these are

SEM[Aµ, g
µν ] =

∫

− 1

16π
F µνFµν

√−g d4x , SI[Aµ] =
∫

AµJ
µ√−g d4x , (48)

where Fµν ≡ ∂µAν − ∂νAµ = ∇µAν −∇νAµ. Note that gµν is present in SEM implicitly
through raising indices of Fµν , and that the connection coefficients occurring in ∇µAν

are cancelled in Fµν . Electromagnetism adds two pieces to the action, SEM for the free
field Aµ and SI for its interaction with a source, the 4-current density Jµ. Previously
we considered SI =

∫

qAµẋ
µ dτ for a single particle; now we couple the electromagnetic

field to the current density produced by many particles.
The action principle says that the action SEM + SI should be stationary with respect

to variations δAµ that vanish on the boundary. Applying this action principle (left as a
homework exercise for the student) yields the equations of motion

∇νF
µν = 4πJµ . (49)

In the language of these notes, the other pair of Maxwell equations,∇[αFµν] = 0, arises
from a non-dynamical symmetry, the invariance of SEM[Aµ] under a gauge transformation
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Aµ → Aµ+∇µΦ. (Expressed using differential forms, dF = 0 because F = dA is a closed
2-form. A gauge transformation adds to F the term ddΦ, which vanishes for the same
reason. See the 8.962 notes Hamiltonian Dynamics of Particle Motion.) The source-free
Maxwell equations are simple identities in that ∇[αFµν] = 0 for any differentiable Aµ,
whether or not it extremizes any action.

If we require the complete action to be gauge-invariant, a new conservation law ap-
pears, charge conservation. Under a gauge transformation, the interaction term changes
by

δSI ≡ SI[Aµ +∇µΦ]− SI[Aµ] =
∫

Jµ(∇µΦ)
√−g d4x

=
∫

ΦJµ d3Σµ −
∫

Φ(∇µJ
µ)
√−g d4x . (50)

For gauge transformations that vanish on the boundary, gauge-invariance is equivalent
to conservation of charge, ∇µJ

µ = 0. This is an example of Noether’s theorem: a
continuous symmetry generates a conserved current. Gauge invariance is a dynamical
symmetry because the action is extremized if and only if Jµ obeys the equations of motion
for whatever charges produce the current. (There will be other action terms, such as
eq. 35, to give the charges’ equations of motion.) Adding a gauge transformation to
a solution of the Maxwell equations yields another solution. All solutions necessarily
conserve total charge.

Taking a broad view, physicists regard gauge-invariance as a fundamental symmetry
of nature, from which charge conservation follows. A similar phenomenon occurs with
the gravitational equivalent of gauge invariance, as we discuss next.

4.4 Energy-Momentum Conservation from Gauge Invariance

The example of electromagnetism sheds light on diffeomorphism-invariance in general rel-
ativity. We have already seen that every piece of the action is automatically diffeomorphism-
invariant because of parameterization-invariance. However, we wish to single out gravity
— specifically, the metric gµν — to impose a symmetry requirement akin to electromag-
netic gauge-invariance.

We do this by defining a gauge transformation of the metric as an infinitesimal
diffeomorphism,

gµν → gµν + Lξgµν = gµν +∇µξν +∇νξµ (51)

where ξµ = 0 on the boundary of our volume. (If the manifold is compact, it has a
natural boundary; otherwise we integrate over a compact subvolume. See Appendix A
of Wald for mathematical rigor.) Gauge-invariance (diffeomorphism-invariance) of the
Einstein-Hilbert action leads to a mathematical identity, the twice-contracted Bianchi
identity, equation (46). The rest of the action, including all particles and fields, must
also be diffeomorphism-invariant. In particular, this means that the matter action must
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be invariant under the gauge transformation of equation (51). Using equation (38), this
requirement leads to a conservation law:

δSM =
∫

T µν(∇µξν)
√−g d4x = −

∫

ξν(∇µT
µν)
√−g d4x = 0 ⇒ ∇µT

µν = 0 . (52)

In general relativity, total stress-energy conservation is a consequence of gauge-invariance
as defined by equation (51). Local energy-momentum conservation therefore follows as
an application of Noether’s theorem (a continuous symmetry of the action leads to a
conserved current) just as electromagnetic gauge invariance implies charge conservation.

There is a further analogy with electromagnetism. Physical observables in general
relativity must be gauge-invariant. If we wish to try to deduce physics from the metric
or other tensors, we will have to work with gauge-invariant quantities or impose gauge
conditions to fix the coordinates and remove the gauge freedom. This issue will arise
later in the study of gravitational radiation.

5 An Example of Gauge Invariance and Diffeomor-

phism Invariance: The Ginzburg-Landau Model

The discussion of gauge invariance in the preceding section is incomplete (although fully
correct) because under a diffeomorphism all fields change, not only the metric. Similarly,
the matter fields for charged particles also change under an electromagnetic gauge trans-
formation and under the more complicated symmetry transformations of non-Abelian
gauge symmetries such as those present in the theories of the electroweak and strong
interactions. In order to give a more complete picture of the role of gauge symmetries
in both electromagnetism and gravity, we present here the classical field theory for the
simplest charged field, a complex scalar field φ(x) representing spinless particles of charge
q and mass m. Although there are no fundamental particles with spin 0 and nonzero
electric charge, this example is very important in physics as it describes the effective field
theory for superconductivity developed by Ginzburg and Landau.

The Ginzburg-Landau model illustrates the essential features of gauge symmetry
arising in the standard model of particle physics and its classical extension to gravity.
At the classical level, the Ginzburg-Landau model describes a charged fluid, e.g. a fluid
of Cooper pairs (the electron pairs that are responsible for superconductivity). Here we
couple the charged fluid to gravity as well as to the electromagnetic field.

The Ginzburg-Landau action is (with a sign difference in the kinetic term compared
with quantum field theory textbooks because of our choice of metric signature)

SGL[φ,Aµ, g
µν ] =

∫

[

−1

2
gµν(Dµφ)

∗(Dνφ) +
1

2
µ2φ∗φ− λ

4
(φ∗φ)2

]√−g d4x , (53)
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where φ∗ is the complex conjugate of φ and

Dµ ≡ ∇µ − iqAµ(x) (54)

is called the gauge covariant derivative. The electromagnetic one-form potential
appears so that the action is automatically gauge-invariant. Under an electromagnetic
gauge transformation, both the electromagnetic potential and the scalar field change, as
follows:

Aµ(x)→ Aµ(x) +∇µΦ(x) , φ(x)→ eiqΦ(x)φ(x) , Dµφ→ eiqΦ(x)Dµφ , (55)

where Φ(x) is any real scalar field. We see that (Dµφ)∗(Dνφ) and the Ginzburg-Landau
action are gauge-invariant. Thus, an electromagnetic gauge transformation corresponds
to an independent change of phase at each point in spacetime, or a local U(1) symmetry.

The gauge covariant derivative automatically couples our charged scalar field to the
electromagnetic field so that no explicit interaction term is needed, unlike in equation
(48). The first term in the Ginzburg-Landau action is a “kinetic” part that is quadratic in
the derivatives of the field. The remaining parts are “potential” terms. The quartic term
with coefficient λ/4 represents the effect of self-interactions that lead to a phenomenon
called spontaneous symmetry breaking. Although spontaneous symmetry breaking is of
major importance in modern physics, and is an essential feature of the Ginzburg-Landau
model, it has no effect on our discussion of symmetries and conservation laws so we
ignore it in the following.

The appearance of Aµ in the gauge covariant derivative is reminiscent of the appear-
ance of the connection Γµ

αβ in the covariant derivative of general relativity. However,
the gravitational connection is absent for derivatives of scalar fields. We will not discuss
the field theory of charged vector fields (which represent spin-1 particles in non-Abelian
theories) or spinors (spin-1/2 particles).

A complete model includes the actions for gravity and the electromagnetic field in
addition to SGL: S[φ,Aµ, g

µν ] = SGL[φ,Aµ, g
µν ] + SEM[Aµ, g

µν ] + SG[g
µν ]. According to

the action principle, the classical equations of motion follow by requiring the total action
to be stationary with respect to small independent variations of (φ,Aµ, g

µν) at each point
in spacetime. Varying the action yields

δS

δφ
= gµνDµDνφ+

(

µ2 − λφ∗φ
)

φ ,

δS

δAµ

= − 1

4π
∇νF

µν + Jµ
GL ,

δS

δgµν
=

1

16πG
Gµν −

1

2
TEM
µν − 1

2
TGL
µν , (56)

where the current and stress-energy tensor of the charged fluid are

JGL
µ ≡ iq

2
[φ(Dµφ)

∗ − φ∗(Dµφ)] ,
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TGL
µν ≡ (Dµφ)

∗(Dνφ) +

[

−1

2
gαβ(Dαφ)

∗(Dβφ) +
1

2
µ2φ∗φ− λ

4
(φ∗φ)2

]

gµν . (57)

The expression for the current density is very similar to the probability current density
in nonrelativistic quantum mechanics. The expression for the stress-energy tensor seems
strange, so let us examine the energy density in locally Minkowski coordinates (where
gµν = ηµν):

ρGL = TGL
00 =

1

2
|D0φ|2 +

1

2
|Diφ|2 −

1

2
µ2φ∗φ+

λ

4
(φ∗φ)2 . (58)

Aside from the electromagnetic contribution to the gauge covariant derivatives and the
potential terms involving φ∗φ, this looks just like the energy density of a field of rela-
tivistic harmonic oscillators. (The potential energy is minimized for |φ| = µ/

√
λ. This

is a circle in the complex φ plane, leading to spontaneous symmetry breaking as the
field acquires a phase. Those with a knowledge of field theory will recognize two modes
for small excitations: a massive mode with mass

√
2µ and a massless Goldstone mode

corresponding to the field circulating along the circle of minima.)
The equations of motion follow immediately from setting the functional derivatives

to zero. The equations of motion for gµν and Aµ are familiar from before; they are
simply the Einstein and Maxwell equations with source including the current and stress-
energy of the charged fluid. The equation of motion for φ is a nonlinear relativistic wave
equation. If Aµ = 0, µ2 = −m2, λ = 0, and gµν = ηµν then it reduces to the Klein-
Gordon equation, (∂2t − ∂2 +m2)φ = 0 where ∂2 ≡ δij∂i∂j is the spatial Laplacian. Our
equation of motion for φ generalizes the Klein-Gordon equation to include the effects
of gravity (through gµν), electromagnetism (through Aµ), and self-interactions (through
λφ∗φ).

Now we can ask about the consequences of gauge invariance. First, the Ginzburg-
Landau current and stress-energy tensor are gauge-invariant, as is easily verified using
equations (55) and (57). The action is explicitly gauge-invariant. Using equations (56),
we can ask about the effect of an infinitesimal gauge transformation, for which δφ =
iqΦ(x)φ, δAµ = ∇µΦ, and δg

µν = 0. The change in the action is

δS =
∫

[

δS

δφ
(iqΦφ) +

δS

δAµ

(∇µΦ)

]√−g d4x

=
∫

[

iqφ
δS

δφ
−∇µ

(

δS

δAµ

)]

Φ(x)
√−g d4x , (59)

where we have integrated by parts and dropped a surface term assuming that Φ(x)
vanishes on the boundary. Now, requiring δS = 0 under a gauge transformation for the
total action adds nothing new because we already required δS/δφ = 0 and δS/δAµ = 0.
However, we have constructed each piece of the action (SGL, SEM and SG) to be gauge-
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invariant. This gives:

δSGL = 0 ⇒ iqφ
δS

δφ
−∇µJ

µ
GL = 0 ,

δSEM = 0 ⇒ − 1

4π
∇µ∇νF

µν = 0 . (60)

For SGL, gauge invariance implies charge conservation provided that the field φ obeys
the equation of motion δS/δφ = 0. For SEM, gauge invariance gives a trivial identity
because F µν is antisymmetric.

Similar results occur for diffeomorphism invariance, the gravitational counterpart of
gauge invariance. Under an infinitesimal diffeomorphism, δφ = Lξφ, δAµ = LξAµ, and
δgµν = Lξgµν = ∇µξν +∇νξµ. The change in the action is

δS =
∫

[

δS

δφ
Lξφ+

δS

δAµ

LξAµ +
δS

δgµν
Lξgµν

]√−g d4x

=
∫

[

δS

δφ
ξµ∇µφ+

(

− 1

4π
∇νF

µν + Jµ
)

LξAµ +

+
(

− 1

8πG
Gµν + T µν

)

∇µξν

]√−g d4x , (61)

where Jµ = Jµ
GL and T µν = T µν

GL + T µν
EM. As above, requiring that the total action be

diffeomorphism-invariant adds nothing new. However, we have constructed each piece
of the action to be diffeomorphism-invariant, i.e. a scalar under general coordinate
transformations. Applying diffeomorphism-invariance to SGL gives a subset of the terms
in equation (61),

0 =
∫

[

δS

δφ
ξµ∇µφ+ Jµ (ξα∇αAµ + Aα∇µξ

α) + T µν
GL∇µξν

]√−g d4x

=
∫

[

−δS
δφ
∇µφ+ Jα∇µAα −∇α (J

αAµ)−∇νTGL
µν

]

ξµ(x)
√−g d4x

=
∫

[

−δS
δφ
∇µφ− (∇αJ

α)Aµ + JαFµα −∇νTGL
µν

]

ξµ(x)
√−g d4x , (62)

where we have discarded surface integrals in the second line assuming that ξµ(x) = 0 on
the boundary.

Equation (62) gives a nice result. First, as always, our continuous symmetry (here,
diffeomorphism-invariance) only gives physical results for solutions of the equations of
motion. Thus, δS/δφ = ∇αJ

α = 0 can be dropped without further consideration. The
remaining terms individually need not vanish from the equations of motion. From this
we conclude

∇νT
µν
GL = F µνJGL

ν . (63)
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This has a simple interpretation: the work done by the electromagnetic field transfers
energy-momentum to the charged fluid. Recall that the Lorentz force on a single charge
with 4-velocity V µ is qF µνVν and that 4-force is the rate of change of 4-momentum.
The current qV µ for a single charge becomes the current density Jµ of a continuous
fluid. Thus, equation (63) gives energy conservation for the charged fluid, including the
transfer of energy to and from the electromagnetic field.

The reader can show that requiring δSEM = 0 under an infinitesimal diffeomorphism
proceeds in a very similar fashion to equation (62) and yields the result

∇µT
µν
EM = −F µνJGL

ν . (64)

This result gives the energy-momentum transfer from the viewpoint of the electromag-
netic field: work done by the field on the fluid removes energy from the field. Combining
equations (63) and (64) gives conservation of total stress-energy, ∇µT

µν = 0.
Finally, because SG depends only on gµν and not on the other fields, diffeomorphism

invariance yields the results already obtained in equations (45) and (46).
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