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CHAPTER 1
Using LLMs in the Enterprise

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 1st chapter of the final book.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

“May you live in times of rapid technological progress” This is the
blessing and the curse of our current moment. Recent advances in
Al and a growing interest in technology, thanks to the release of
wildly popular consumer products, have led to a frenzy of interest
in, and use of, Al, and Large Language Models (LLMs) in particular,
in the enterprise.

However, Al and LLMs remain nascent in the enterprise, meaning
that best practices for their use are being defined. At the same time,
the core technologies — the models themselves, technologies to host
and serve the models, etc. — are evolving rapidly.

Table 1-1 provides a brief timeline of the release of various mod-
els and technologies that could be relevant for enterprise use. The




diversity and speed of release create both opportunities and chal-
lenges when you are looking to use these technologies in production
use cases.

Table 1-1. A (Non-Exhaustive) Timeline of Enterprise-Relevant Model
and Product Releases

Developer or  Model or Release Date  Description

Provider Product

OpenAl GPT-3 May 2020 175 billion parameter LLM with 2048 token
context window

OpenAl ChatGPT November 2022 | Consumer chatbot application, powered by

GPT-3.5 Turbo

Microsoft OpenAl January 2023 | Managed service offering LLMs from OpenAl
Azure Service

Amazon Web | Bedrock September Managed service offering LLMs from various
Services 2023 developers
Dataiku LLM Mesh | September Commercial LLM Mesh offering for connecting
2023 to LLMs and building agentic applications in the
enterprise
Databricks DBRX March 2024 Open-weights mixture of experts model with

132B total parameters and 32k-token input
context window, licensed for commercial use

Meta LLaMA 3 April 2024 Updated LLM with 4096-token input context
(8B, 70B) window, with updated license allowing certain
commercial uses
Mistral Mixtral April 2024 Open-weights mixture of experts model with
8x228 up to 141B parameters and 64k-input context
window, licensed for commercial use
OpenAl GPT-40 May 2024 Multimodal LLM supporting voice-to-voice
generation and 128k-token input context
window
OpenAl o1 September Reasoning model with built-in chain-of-thought
2024 for complex scientific and mathematical
problems
DeepSeek R1 January 2025 Open-source reasoning model (MIT license)

optimized for math, coding, and logic

Today, you can build entirely new capabilities that would not have
been possible previously, to improve the lives of your employees and
better serve your customers. But you also have to keep up with rapid
changes in the core technologies and use techniques that have not
been fully proven. We are all now at the cutting edge.

10 Chapter 1: Using LLMs in the Enterprise



This diversity of options among the technologies and techniques is
truly a great thing. In fact, we are just scratching the surface for
the potential uses of LLMs in the enterprise. It’s easy to 'imagine
a future where these technologies are generating massive amounts
of value for the enterprise, automating mundane tasks, and making
new products and services possible.

In this chapter, we will briefly introduce what an LLM Mesh is, and
then take an in-depth look at the many different types of LLMs that
can be appropriate for use in the enterprise. We'll discuss different
characteristics of models, and how models are built, published, run,
and perform.

After reading this chapter, you should be able to think about how
you would want to use different models for different applications in
your business. Given this multitude of models, you will see why an
LLM Mesh architecture is going to be a key part of your Al strategy
going forward.

What Is an LLM Mesh?

An LLM Mesh is an architecture paradigm for building agentic
applications in the enterprise. There are three principles regarding
what an LLM Mesh should accomplish. An LLM Mesh should
enable you to:

1. Access various LLM-related services through an abstraction
layer.

2. Provide federated services for control and analysis.

3. Provide central discovery and documentation for LLM-related
objects.

These principles allow for agentic applications to be built in a mod-
ular manner, simplifying their development and maintenance.

Figure 1-1 illustrates an LLM Mesh architecture being used to
develop two applications. Various objects, referenced in the Catalog
and accessed via the Gateway, are combined to build the logic of

1 An agentic application is a software that uses an Al agent to perform tasks, make deci-
sions, or interact with users with a defined level of autonomy. AI agents are discussed
in more depth in Chapter 2.
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the applications. Federated services provide control and analysis
throughout the lifecycle of the application.

Federated Services for Control and Analysis

Access Content Cost Performance Relevance

Third Party Tool 2
API

Third-Party
Model 1 — LLM

Service 1

Prompt 3

Retriever 1

Self-Hosted
LLM Service

Model 2 ——

Prompt 4

Catalog and Gateway

‘ LLMs ‘

Retrieval Services ‘ Tools ‘ ‘ Applications ‘

LLM Services ‘ Prompts ‘ ‘ Agents ‘

Figure 1-1. An LLM Mesh architecture

It is certainly possible to build agentic applications in the enterprise
without an LLM Mesh. Many of the initial applications that organi-
zations have built since the release of ChatGPT do not use an LLM
Mesh. In these cases, the logic for connecting the various objects
of the application (LLM services, retrieval services, etc.) is built
directly into the application, as are any additional capabilities such
as access controls or logging. This approach is perfectly appropriate
for building a first proof of concept, or a single application.

An LLM Mesh, however, becomes valuable when:

1. The total number of agentic applications being developed
begins to grow,

12 Chapter 1: Using LLMs in the Enterprise



2. More teams start building and using the applications,

3. More complex agentic applications are being designed and built.

In this context, the LLM Mesh will accelerate the development of
the applications, simplify their maintenance, and help to ensure that
the applications meet enterprise standards for safety, security, and
performance.

Why LLMs and Not Generative AI?

An LLM Mesh architecture focuses on LLMs and not
Generative Al more broadly because LLMs are the core
building blocks of the AI applications that will be built in
the enterprise.

LLMs are large neural networks trained on text data. They
possess a variety of natural language processing capabili-
ties. Many, but not all, LLMs can generate text. Generative
Al is a broader category of Al that includes models that
can generate text, audio, images, and videos.

Beyond simply generating text, LLMs are also used to rea-
son through a problem, to give instructions to various
tools, and to write the code to connect to various tools.
While image-generating models, for example, can be useful
in the enterprise, they are not relevant in the context of
building sophisticated Al applications that are the focus of
the LLM Mesh.

An LLM Mesh provides a gateway not only to LLMs, but also to the
full range of objects that are needed to build fully-featured, agentic
applications. These include the LLMs themselves and the services to
host them, but also agents, tools, retriever services, and applications
such as chatbots.

These objects are, for most organizations, new types of assets that
will need to be developed and used. The skills to develop and use
these kinds of objects are not yet commonplace in organizations,
and best practices for their development and use are still being
defined. Amid this rapid innovation, the LLM Mesh architecture
paradigm aims to simplify the management and use of these objects
to accelerate and standardize the development of agentic applica-
tions. Chapter 2 will explore in depth these different types of objects
and how an LLM Mesh can simplify their use.

What Is an LLM Mesh? 13



The Right Model for the Right Application

The challenge for the use of LLMs in the enterprise is not a lack
of availability of models. As of February 2025, the popular model
repository Hugging Face lists 1,377,986? models, of which 178,489°
are text-generation models. More models are being developed and
released every day.

In fact, the abundance can actually be a hindrance, as you have to
sort through the many different options to choose the ones that are
best for your applications.

A large general model that can do most things pretty well is a good
place to start. But as an enterprise’s use of LLMs matures and it seeks
higher levels of performance and optimized budgets, it will need to
use a growing number of models across different applications.

The following sections explore the different characteristics of mod-
els and how these characteristics may make a model more or less
appropriate for the many different, specific uses in the enterprise.

Model Size: The Upside and Downside of More
Parameters

The word “large” in large language model refers to the number
of parameters in the model. Alternatively, “large” may refer to the
number of tokens in the training data that the model is trained on.
More training tokens lead to more parameters.

LLMs often have hundreds of billions to trillions of parameters. For
example, GPT-3, released in May 2020* and the immediate precur-
sor to the model behind the first version of ChatGPT, has 175 billion
parameters. The first version of LLaMA from Meta Al in February
2023 has 65 billion parameters.® Increasingly, the makers of propri-
etary models are no longer making the number of parameters in
their models public.

2 https://huggingface.co/models, accessed February 4, 2025

3 https://huggingface.co/models?pipeline_tag=text-generationesort=trending, accessed
June 20, 2024

4 https://arxiv.org/abs/2005.14165

5 https://ai.meta.com/blog/large-language-model-llama-meta-ai/
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These parameters are the numerical values (sometimes they will be
called weights and biases) that make up the simple mathematical
formulae of each neuron in the neural network. Usually, they are
32-bit floating point numbers. A process called quantization can
simplify these numbers to 4- or 8-bit integers. This process can
often dramatically improve the efficiency of a model while having
only a modest impact on model performance.

Figure 1-2 illustrates a simple neural network architecture, showing
the input layer, two hidden layers, and the output layer. The circles
represent the nodes in the network, the values under the nodes
are the biases, while the values on the lines connecting the nodes
represent the weights. Larger neural networks, like LLMs, are built
on the same basic architecture but are billions of times larger with
more than one hundred hidden layers.

237838
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Input Layer Hidden Layers Qutput Layer

Figure 1-2. Simplified example of a neural network showing the input,
hidden, and output layers and the weights connecting each node and
the biases of each node

Generally speaking, larger models perform better: They can do
more tasks and they can do those tasks better. Thus, it could be easy
to conclude that you should choose the largest model your budget
allows and use it for everything. But that would be like using your
large, comfortable, powerful grand touring car for every trip. While
it would be the right choice for a cross-country roadtrip, it would be
overkill for a quick trip to the grocery store or the bakery around
the corner. A bicycle or your own two feet would be better for such
errands.

The Right Model for the Right Application 15



The following subsections explain the tradeoffs related to the size of
a model.

Inference Costs

The most direct impact of a larger model size will be on inference
cost. Inference is the process of generating tokens in response to a
particular input. A model with more parameters will require more
calculations during inference. One way or another, those calcula-
tions must be run on some hardware that is installed and managed
somewhere and that is consuming electricity, for which someone
will have to pay the bill at the end of the month.

In some cases, companies offering these models as a service may
obfuscate these costs, for example, by subsidizing the cost in order
to gain more customers. This may make an apples-to-apples com-
parison difficult. We'll dig into cost considerations in Chapter 3.

Some models function, in essence, as a combination of smaller mod-
els, each specialized in different tasks. This architecture, known as
Mixture of Experts (MoE), can dramatically reduce the cost of infer-
ence. One well-known model using an MoE architecture is 8x7B
(also known as Mixtral) from Mistral. Despite being a 46.7-billion
parameter model, only 12.9-billion parameters are used per token.
This approach has led to improvements in inference cost, but makes
the model more challenging to build and to fine-tune.

All other things being equal, larger models will be more expensive to
use, though technological advancements like MoE mean that these
tradeoffs will become more complex in the future. The benefit that
large models bring to a particular use case may justify their expense
in certain cases, as discussed in the sections and chapters below, but
a wise strategy will use them only where needed.

Inference Speed

While the inference of a larger model will require more calculations,
these calculations can be done more quickly when using larger and
higher-performance hardware. Furthermore, many of these calcula-
tions can be parallelized, using multiple processing units at the same
time to run all of the necessary calculations. Again, MoE models do
not need to use all parameters for every task.

Standard benchmarks are being established to accurately quantify
and compare the speed of different models, acknowledging that

16 Chapter 1: Using LLMs in the Enterprise



hardware and network performance will have a significant impact
on the results. The two metrics that are used most commonly are
latency and throughput:

 Latency, often measured as Time To First Token (TTFT), is
a measure of how long the model takes to generate its first
response token to a user’s input. In applications where the end
user is interacting with the model in real time, latency will
influence whether the model “feels” responsive. In applications
where the model’s response is part of a longer chain of interac-
tions, latency will need to be considered when setting when the
application will time out.

o Throughput, often measured as Tokens Per Second (TPS),
measures the overall rate at which the model will generate
tokens in response to a given request. Like latency, it will influ-
ence if a model feels fast to an end user. Throughput needs
to be taken into consideration when building applications that
depend on the output of the model.

When comparing the speed of models, pay close attention to the
units being used, as different testers are using different methodolo-
gies.

While the relationship between model size and inference speed is
indirect (because large models can be run more quickly on higher-
performance hardware, and factors like network performance can
influence the time it takes to receive a response), the measured
speed of a deployed model must be taken into account when build-
ing an agentic application.

Task Coverage and Performance

One of the main functional differences between LLMs and previous
generations of models used for Natural Language Processing (NLP)
is that those earlier models were always task specific. For example,
separate models would be used for sentiment analysis, text summa-
rization, or language translation.

LLMs can do all of those tasks, and generative LLMs can do some-
thing that previous models could not: Generate text based on a
prompt. Generally speaking, models with more parameters can per-
form more tasks, which can be useful in the enterprise when several
tasks need to be performed on the input text.

The Right Model for the Right Application 17



LLM:s have also been shown to gain new abilities as they grow larger
and are trained on more and more data. These emergent abilities are
unpredictable. In other words, researchers cannot predict ahead of
time at what point in its training a model will gain new abilities.® It is
possible that future LLMs will be capable of many more tasks or will
see dramatic improvement in their performance of existing tasks as
they grow larger.

In addition to gaining new abilities as they grow, larger LLMs gener-
ally show better performance on any task that they are capable of
performing as well. Recent research shows that this improvement
in performance is not linear nor predictable, as with the emergent
abilities mentioned above.”

Context Windows

The amount of input text that a model can receive within a single
prompt is known as its context window. Measured in tokens, it
defines how much information a model can work with at a single
time.

For example, a model with a small context window can only be used
to summarize a document that can fit in its context window. You
could break up the document into smaller pieces, but the model
would summarize each separately, without knowledge of the entire
document, potentially resulting in repetitive or incoherent results.
Large context windows, on the other hand, allow for plenty of
space to provide examples of what you want the LLM to produce
(called few-shot learning) and to engage in more complex prompt
engineering techniques.

Generally speaking, larger models have larger context windows, and
some models have been optimized for exceptionally large context
windows. While the original GPT model had a context window of
only 512 tokens (approximately one page of text) Gemini 1.5 from
Google now has a context window of more than 1 million tokens
and has been shown in internal testing to handle up to 10 million
tokens.

6 https://openreview.net/pdf?id=yzkSU5zdwD
7 https://arxiv.org/abs/2210.14891
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Sizing Models to the Task

Reading these previous sections, it is easy to conclude that if cost
and complexity are no barrier, then the largest models are always the
best choice for any application in the enterprise. But, in which enter-
prise are cost and complexity not a barrier? In fact, these are the two
greatest barriers to the practical use of LLMs in the enterprise!

Given this reality, enterprise users of LLMs will need to choose a
model that strikes the right balance of ability, performance, cost,
and complexity for a specific application. The right choice for one
application may not be the right choice for another application.

General Models vs. Specialized Models

Building on this understanding of the implications of model size,
we will now explore the differences between general models and
specialized models.

General models are those that have been trained to perform at
human level across a wide range of tasks. OpenATI’'s GPT-4 (released
in March 2023®) is an excellent example of such a model. It demon-
strates very high performance across a great number of tasks, cover-
ing natural languages, programming languages, and a wide variety
of specialized jargon. It can generate, summarize, and translate text,
it can write technical reports, and it can write poetry. Furthermore,
GPT-4 can take image data as input, a capability known as multimo-
dality.

In contrast to these general models, specialized models have been
trained to perform well on specific tasks, in specific domains, or
have been compressed and optimized for performance at a smaller
model size.

Note that while high-performing, general models tend to be larger
models, specialized models may be larger or smaller.

Types of Specialized Models

Task-specific models are those that are focused on doing specific
tasks very well. Some examples of task-specific models include
M2M100°%, a model that is designed to translate between any pair

8 https://openai.com/index/gpt-4-research/

The Right Model for the Right Application 19


https://openai.com/index/gpt-4-research/

of natural languages, or OpenAI’s Codex", an evolution of GPT-3
that is trained specifically to generate code across a wide variety of
programming languages. A common application might be a model
that is specialized in summarization, allowing it to be much smaller
than a general model. Thanks to its small size, it could run locally
on a mobile device and be used for rapidly summarizing content
directly on the phone.

Domain-specific models are those that are trained on the language
of a specific domain. For example, BioMedLM" is a 2.7-billion
parameter model trained on biomedical literature and is thus well-
adapted to answering questions about medical topics, while Bloom-
bergGPT" is a 50-billion parameter model trained on a very large
dataset of financial documents designed to serve the financial serv-
ices industry.

Resource-constrained models are models that have been compressed
through various techniques to maintain good performance in their
desired tasks or across a wide range of tasks, while being less
resource intensive to run. An example is MobileBERT", a com-
pressed version of the popular BERT model designed to be run on
mobile devices.

Embedding models transform text into numerical representations
called embeddings or vectors. These embeddings capture the
semantic meanings of the text and the relationships between the
different parts of the text. A common application is retrieval aug-
mented generation (RAG) where a corpus of text (e.g., thousands of
documents) are converted into embeddings and stored in a special-
ized database called a vector store.

Reranking models are used to refine the initial ranking of search
results of an embedding model to make the results more relevant
to the end user. There are LLM-based and non-LLM rerankers,
each presenting tradeoffs in terms of performance and quality of
response.

9 https://about.fb.com/news/2020/10/first-multilingual-machine-translation-model/
10 https://openai.com/index/openai-codex/

11 https://arxiv.org/abs/2403.18421

12 https://arxiv.org/abs/2303.17564

13 https://arxiv.org/abs/2004.02984
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Choosing a General or Specialized Model

The existence of a diverse and growing ecosystem of both general
and specialized models gives enterprises the opportunity to use
different models for different purposes.

In the enterprise, general models are well-suited to tasks where
the input is going to be highly unpredictable. This could be the
classification of documents into different categories. For example,
if a directory contained a mix of contracts, invoices, and emails, a
first step in the analysis could be to use a general model to sort the
documents into different categories so that the contracts could be
analyzed separately from the invoices.

Specialized models are well adapted for tasks where the input data
is more homogeneous and predictable. Let’s explore what this might
look like across a pharmaceutical company. That company may
wish to build a chatbot to serve its customers (doctors, nurses,
pharmacists, and other healthcare providers) in their interactions
with patients. It would likely choose a domain-specific model like
BioMedLM to ensure higher quality and more relevant results. The
same company may then use a model like ESM" from Meta Al
researchers which has been trained on the language of proteins
as part of their molecular research applications. Finally, that same
organization may use a non-LLM computer vision model to watch
their products as they come off of the manufacturing line to quickly
identify any anomalies as part of their quality assurance processes.

General models can be a very good starting point for enterprises as
they experiment and build their first use cases using LLMs. At those
early stages, the simplicity of using a single model for a variety of
tasks and use cases outweighs the benefits of further optimization
using specialized models. But, as an enterprise scales its use of
LLMs across use cases, enterprises will want to optimize their use to
improve performance and reduce costs. In this context, specialized
models become more relevant, and the number of models that an
organization will need to manage and apply will tend to increase.

14 https://github.com/facebookresearch/esm
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What Is Fine-Tuning?

A common way of creating a domain-specific model is to fine-tune
an existing base model. For example, this is how BloombergGPT
was built, by fine-tuning the open-access BLOOM model on a
proprietary dataset of financial documents."

Fine-tuning is a type of transfer learning that feeds new — usually
specialized — data into a model to retrain some parts of the model
on this new data. Compared to building a model from scratch, it is
far less complex and compute-intensive.

While fine-tuning is simpler and less expensive than building a
base model, it remains an advanced technique and should be used
only when other, simpler, and less expensive avenues have been
exhausted.

Fine-tuning has often been cited as a way to elicit better perfor-
mance from base models, allowing enterprises to differentiate their
use of LLMs from their competition. While this is true, it ignores
or downplays the difficulties of fine-tuning and leaves unexplored
the opportunity to generate differentiated results using simpler
techniques like prompt engineering and Retrieval Augmented Gen-
eration (RAG).

Making Sense of Model Licenses

There has often been a conflation between a model’s license (e.g.,
open source vs. proprietary) and where the model is hosted (e.g.,
provided as a service via API vs. self-hosted or on-premises). It is
important to distinguish between the two dimensions. For example,
hosted services like Amazon Bedrock serve both proprietary and
open models, while providers like Cohere license their proprietary
models for self-hosting in addition to hosting the model themselves.
Hosting options will be covered in the next section, while this sec-
tion will distinguish between the different license types.

Proprietary Models

Proprietary models are just that: proprietary to their creators. The
creator of a proprietary model retains full control over the intellec-

15 https://arxiv.org/abs/2303.17564

22 Chapter 1: Using LLMs in the Enterprise


https://arxiv.org/abs/2303.17564

tual property of the model itself. Most often, these models are a
black box. In other words, their training data, the algorithm used
to train the model, any subsequent steps such as reinforcement
learning or fine-tuning, and the weights of the model itself remain
hidden from the end user, unless the developer chooses to disclose
any of this information.

Early in the development of LLMs, there was a trend towards
openness, even among developers of proprietary models. OpenAl
published a technical paper detailing the development process of
GPT-3.1¢ The release of subsequent models, such as GPT-4, have not
been accompanied by such detail.

The use of proprietary models is governed by the terms of use that
a customer agrees to when using the model. An enterprise should
ensure a full and detailed legal review of these terms to ensure that
they are appropriate for the intended use. Specific attention should
be given to any rights that the model provider may claim to have
on any data sent to the model for inference. Generally, models that
are licensed for professional use do not retain any customer data
for retraining purposes, though they may retain customer data for
quality assurance purposes.

Open-Weights Models

An open-weights model provides public access to the pre-trained
parameters of the model. This can allow the end user to modify the
weights through fine-tuning or other techniques to adapt the model
to their needs.

Open-weights models typically do not publish their training data,
training algorithms, or other associated information. As such, it can
limit the ability to perform a detailed technical inspection of the
model or to reproduce the model’s performance. These limitations,
however, are most relevant to other researchers and are less relevant
to enterprises that are seeking to simply use a model in the most
efficient and effective way.

16 https://arxiv.org/abs/2005.14165
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Open Access Models

Open access is a growing category of models that are nearly open,
but have custom terms that cannot be considered fully open source
in the traditional definition of that term. It covers a wide gamut of
licenses with different restrictions, and thus should be the subject
of a detailed legal review to ensure that the license allows for the
intended use.

Some examples include:

o BLOOM, which was released under the OpenRAIL-M license."”
Though quite nearly open source, it has requirements for
responsible use of the model, which means that it is not fully
open source.

e LLaMA 2 and 3 from Meta Al, which have been released with
their own custom licenses (called the LLaMA 2! and LLaMa 3"
Community Licenses, respectively) that set limits to the use of
the model. Specifically, the licenses forbid the use of the model
in applications with more than 700 million monthly active users
and for the purpose of building competitive models.

Open Source Models

Open source models are the most open of all, publishing details
of their training data, training algorithms, and model parameters,
allowing for the most permissive use of the model. Common open
source licenses include Apache 2.0 and MIT. Meta AT’s first version
of their LLaMA model was released under a GPLv3 license, restrict-
ing it from commercial use and thus making it not useful for most
enterprise applications.?

Choosing a License for Enterprise Use

Even though proprietary models are the most restrictive, they are
often entirely appropriate for use in the enterprise, as with any
other proprietary enterprise software. By charging for access to their
models, providers of proprietary models may be able to more easily

17 https://bigscience.huggingface.co/blog/the-bigscience-rail-license
18 https://llama.meta.com/llama2/license/
19 https://llama.meta.com/llama3/license/

20 https://arxiv.org/abs/2302.13971
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provide for services and support for the use of their model. This
may make their use more appropriate for use in the enterprise.

Open-weights, open access, and open source models may be more
useful in applications where an enterprise wants more control over
the model itself and possesses the technical expertise to make any
such modifications or to host the model.

Model Hosting

Enterprises have three main hosting options when looking to access
LLMs:

1. API services from the model developers, such as OpenAl,
Anthropic, Cohere, and Mistral.

2. Cloud Service Providers offering hosted LLM services, such as
Azure OpenAl Service, AWS Bedrock, or Google Vertex Al
Model Garden. These services also allow customers to load their
own models, while the underlying hardware is managed by the
cloud provider.

3. Self-managed hosting of models. Many models with different
licensing terms are available for self hosting, including open-
source and open-access models as described above. Cohere also
licenses its proprietary models for self-managed hosting.

In many cases, models hosted by their developer or a cloud service
provider (options 1 and 2, above) are the best choice in the enter-
prise. In the same way that cloud computing outsourced the burden
of running data centers, hosted models are a simple continuation of
that trend, offering infrastructure-as-a-service. Given the intensive
compute requirements of LLMs, especially under heavy workloads,
outsourcing this can be a wise choice.

The most common objection to using a hosted service is that it
requires sending corporate data to a third-party service. But, in
many cases, this corporate data is already hosted by a third party
that may also be hosting internal communications and other sen-
sitive data (e.g., a company that uses Microsoft 365 productivity
and communication tools has its data in Azure). Is using the LLM
service from that same provider any different? It is ultimately a
question that warrants review by your legal and risk teams, but in
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most cases, the conclusion is that it is not different in a meaningful
way.

Self-hosting a model requires acquiring the necessary hardware,
configuring it to run the LLM, and then maintaining that stack for
reliable internal use. Typically, this will require a cluster of GPUs
that have been properly configured with the right drivers and pack-
ages to run the LLM in question. The LLM must then be loaded into
this environment so that it can begin to serve internal requests.

Self-hosting can be an appropriate choice for an enterprise in cases
where an organization needs full control over the model and the
hardware it runs on and cannot use a third-party service for its data.
This may be the case in the most restrictive data environments, or
if the enterprise does not want to rely on a third party to ensure the
performance of the environment, notably in contexts where third-
party providers may need to throttle access to certain customers to
ensure the overall stability and availability of their service.

In the case of both self-hosting and hosted services, applications that
use the LLM will access the model through an API endpoint. The
difference is simply who is hosting and maintaining that endpoint
and whether the data going to and returning from the LLM leaves
the corporate firewall of the enterprise.

Building a Base Model Is Not for Most Organizations

Early on in the popular interest in LLMs, a lot of attention was given
to the expense and complexity of building these models. Billions
of dollars were being spent building these models, and sometimes
training them took many months. A huge amount of this initial
work was amassing the enormous training sets required to build
models of this scale.

Recent advances have brought down the time needed to build new
models, and open source training data repositories now exist. But
the fundamental question for an enterprise that is considering build-
ing a model remains: Why would you? Given the great diversity
of today’s models, which offer seemingly endless combinations of
performance, specificity, licensing, and hosting options, what would
justify the time and expense needed to build your own model,
especially given that you are uncertain of being successful?
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Any company whose core business is not building or serving Al
models should not consider building their own model. There are
more than enough options on the market today. The challenge is
not getting access to a model, but using it safely, securely, efficiently,
and effectively to further your business goals. This is where an LLM
Mesh comes into play.

Bottom Line: Why the LLM Mesh?

As you have read in the previous sections, a great variety of models
exists in an ecosystem that is rapidly evolving. This is ultimately a
very good thing for enterprises: It means that they will be able to
pick and choose the right model for the right applications within
their business. Building applications that are powered by these
LLMs requires combining them with other objects, like retrieval
systems, prompts, and tools. This requires careful attention to many
different factors:

+ How the models, services, and associated objects are registered
and used within the organization,

o How the data is routed to the model,

» How access to the models and services is controlled,

» How the use of the model is logged and audited,

» How the content generated by the model is moderated,
« How the models can be enriched with proprietary data,

o How can the applications be developed, deployed and main-
tained efficiently, and

« How can more people become involved in this process?

As more agentic applications are built and used in the enterprise,
the cost and complexity of managing all of these dimensions risks
spiraling out of control. This could force the enterprise to make
compromises, potentially limiting the value that it derives from Al

For example, perhaps there is a use case that would benefit from
using a small, specialized model that is self-hosted and to which
access is restricted. This could be a code assistant that is well-versed
in the company’s proprietary code libraries. If the organization lacks
the ability to quickly and efficiently add this model to its mix, it may
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not pursue this use case, leaving the potential gains in efficiency on
the table and falling behind its competition.

This would be unfortunate, given that many of the additional capa-
bilities that are required to use an LLM efficiently and effectively in
an enterprise are common to all models.

This is the power of an LLM Mesh: its ability to reduce the cost of
building an additional agentic application in the enterprise. With an
LLM Mesh, an enterprise is free to develop an optimal Al strategy
without compromising on performance, cost, safety, or security.

The remaining chapters of this technical guide will go into much
more detail about how implementing an LLM Mesh can be done.
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CHAPTER 2

Objects for Building Agentic
Applications

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 2nd chapter of the final book.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

LLM Mesh is a new architecture paradigm for building agentic
applications in the enterprise. It enables an organization to build
and maintain more agentic applications, ultimately getting more
value from LLMs.

An LLM Mesh will allow you to:
1. Access various LLM-related services through an abstraction
layer.

2. Provide federated services for control and analysis.
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3. Provide central discovery and documentation for LLM-related
objects via a catalog.

This chapter will describe the many different types of LLM-related
services that are used in building agentic applications, and how
they can be connected with one another. These various LLM-related
services are called “objects” in an LLM Mesh. The final section
of this chapter will describe the importance of the catalog for the
discovery and use of the objects in an LLM Mesh.

We start with an explanation of why using an LLM Mesh to build
agentic applications is increasingly important in today’s competitive
landscape. The bottom line is that you are going to need to build a
lot of custom agentic applications.

The Potential of New Agentic Applications

In Chapter 1, we learned about the many different types of models
available, how they work, and the options available for hosting
them. What can these models be used for in the enterprise? There
have been two main, initial uses of these models in the enterprise.
The first is simply providing a version of the consumer chatbot
experience within a wrapper that meets enterprise security and
auditability requirements. The second is using these models to pro-
vide software assistants, often called “copilots,” that can accelerate
the use of existing SaaS products.

This first generation of enterprise use has been met with a mixed
reaction. In some cases, notably when used as coding assistants for
software developers, the copilots have proven to be valuable addi-
tions to the enterprise IT mix. Other feedback has been more mixed,
leading in some cases to disillusionment. It is too early, however, to
discount the potential for LLMs in the enterprise. This is because the
second generation of agentic applications in the enterprise will be
more sophisticated.

These applications will not only use the ability of these models to
generate text but also their ability to solve arbitrary problems when
instructed to do so. For example, an LLM could be provided with
the documentation for an API that looks up the current price of a
stock. With that documentation and its coding ability, the LLM can
write a script to call that API for a given stock price. If allowed to
execute that script, the LLM—without having ever been explicitly
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programmed to do so—could then become a tool for the end user
to look up arbitrary stock prices. This ability to accomplish tasks
for which the LLM has not specifically been programmed is called
“generalization,” and it is what allows LLMs to be the engines in a
new class of enterprise applications.

These new applications will provide automation and decision sup-
port throughout the enterprise. In order to do so in a reliable
and cost effective manner, however, they will need to be carefully
designed, tested, deployed, and monitored. While many of the con-
straints of traditional enterprise applications will also apply to this
new class of agentic applications, the way in which they are built,
and the components that are used to build them, will be different.

Given LLM’s ability to generalize, would it be possible to develop
a single, all-powerful application that can solve any problem and
answer any question in the enterprise? In short, no. While the LLM
itself is capable of generalization, the constraints of the enterprise
will require that the scope of any one application be relatively nar-
row to ensure consistently good performance and to control access
to data and tools.

For example, this imaginary, all-powerful application sounds conve-
nient but would require full access to all of the company’s data
and tools, from the most mundane to the most sensitive. Just as
an employee should only have access to the data and the tools that
they need to do their job, so too must the access of any one agentic
application be limited to that which it needs to perform its function.
Furthermore, while LLMs are capable of generalization, they require
quite specific instructions to deliver consistent results, often with
examples of the expected input and output. This also drives towards
a larger number of more narrowly-scoped applications.

Concretely, how many such agentic applications might a large cor-
poration need? Let's do some order-of-magnitude estimations. Let’s
say that a large corporation has 10 departments and each depart-
ment has 5 core functions. Each of these functions could poten-
tially benefit from 5 such applications. For example, within a Sales
Department, the Sales Operations function could have one applica-
tion that researches their target accounts, a second that checks if the
sales process is being respected, a third that continuously analyzes
the health of the sales pipeline, a fourth that summarizes meetings
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with prospects and a fifth that assists salespeople with their follow-
ups.

Doing the multiplication of this order of magnitude estimate gives
us 10 x 5 x 5 = 250 such applications in that enterprise. Again, this is
not a precise number, it’s a rough estimate of the order of magnitude
of applications to expect. Expecting several hundred such applica-
tions in use in a large organization seems like a reasonable estimate.

Build vs. Buy

If an organization would benefit from several hundred novel appli-
cations, where will they come from? As always, organizations will
face a “build versus buy” decision. On the “buy” side of that balance,
existing software vendors and new startups are already bringing
these applications to market, and organizations will have a lively
marketplace of competitive offers to choose from. On the “build”
side of the balance, more advanced organizations are building their
first production-ready agentic applications. Which approach is best?
Each has its advantages, disadvantages, and appropriate uses, mean-
ing that most organizations will buy some applications, and build
others. Table 2-1 summarizes these tradeoffs and considerations.

Table 2-1. Comparing the tradeoffs of building versus buying agentic
applications

Advantages Disadvantages Ideal Uses
Bh”yigg (I)fff' « Tum-key performance | - Same performance as Nc')]n-critri]calfurlmstions
the- € once implemented your competitors that use where t € goal s to
Agentic - gain in efficiency, not
o « Developed and the same solution .
applications intained b Comol . necessarily to
mamta!ne y -+ Complex to |ptegrate differentiate from
professional software with enterprise systems competitors.
engineers « Governance challenges
for tracking which
models are used by
which applications
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Advantages Disadvantages Ideal Uses
Euilding « Adapted to specific « Skills required to build gore and strgtegifc i
”“"'?‘ business context with applications may not be unctions where fu
Agentic ) . ) control and strong
S the potential to build available -
Applications differentiated Complexity of monitori competitive
i ergqt!ate « Comp! e?uty.o'momtonng differentiation are
capabilities and maintaining grows | peeded.
« Full control and with the number of
transparency over the applications
application
« Independence from
software, Al, and cloud
providers

Agentic applications, whether they are custom-built or bought off-
the-shelf, have the potential to improve the efficiency of an organi-
zation’s operations. But simply improving your efficiency in lockstep
with that of your competitors does not improve your competitive
position in the market. If you are making the same efficiency gains
as your competitors and no more, you are not becoming more
competitive, you are simply keeping up.

Building custom agentic applications allows an organization to cre-
ate a capability that its competitors do not possess, and thus to
outperform them in that particular domain. Given the cost and
complexity of building, monitoring, and maintaining these applica-
tions, organizations will choose to focus their internal development
efforts on the parts of their business that stand to benefit most from
strong competitive differentiation. In most cases, this will be their
core business. For example, it may be R&D and supply chain man-
agement for a pharmaceutical company, or risk and price modeling
for an insurance company. The needs of non-core functions will be
satisfied with applications bought off the shelf.

The Complexity Threshold

How many custom applications can any given organization develop
and maintain? Each organization is different but every organization
has a maximum number of applications that it is able to develop,
monitor and maintain with its current practices and techniques. We
call this the organization’s “complexity threshold”, and it is illustrated
in Figure 2-1.

As the organization develops and deploys more agentic applications,
the complexity of monitoring and maintaining them increases until,
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at some point, the maximum complexity is reached and no more
applications can be developed. Reaching this threshold means that
the organization cannot develop more applications, even if doing
so would benefit its business. If the organization wants to develop
more applications, it must find a way to increase its complexity
threshold. This requires standardizing and structuring the way that
the organization builds these applications.

Organization's Complexity Threshald
using an LLM Mesh

Organization's Complexity Threshold
using & Monalithic Architecture /

Complexity of Building and Maintaining Applications

Number of LLM-powered Applications

Figure 2-1. Comparing the tradeoffs of building versus buying agentic
applications

A New Paradigm for Building Agentic Applications

Bringing standardization and structure to the way that applications
are built in the enterprise is a show weve seen before. Over the
years, organizations have used different architecture paradigms for
developing applications. Starting with monolithic applications in the
early days of application development, where all components were
tightly integrated into a single codebase, organizations then shifted
to an architecture paradigm with a higher degree of abstraction with
the services-oriented architectures of the late nineties and, now, the
modern standard of microservices has taken that abstraction even
further.
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Today, the architecture paradigm for building agentic applications
is monolithic applications using packages like LangChain. This
approach is appropriate for building your first few POCs and pro-
duction applications, but it reflects the relative immaturity of agentic
application design in the enterprise.

A new architecture paradigm is needed for building and maintain-
ing many agentic applications that can raise an organization’s com-
plexity threshold. LLM Mesh is that new architecture paradigm.

Now, let’s look at the objects used in building an agentic application.

LLM Mesh-Related Objects: An Overview

Building an LLM Mesh requires understanding the different types
of objects that must interact with one another within an agentic
application. Chapter 1 covered the LLMs and the various services
that host and serve them. While those models and services are at
the heart of an agentic application, more is needed, especially if the
developer hopes to build a custom application that will stand apart
from the competition and deliver better and more valuable perfor-
mance. This requires integrating the LLMs with various objects
unique to the organization.

An LLM Mesh thus treats objects of a similar type in the same
way, with the LLM Mesh itself providing the translation between the
generic object (e.g. a tool) and the specific service (e.g. a specific
SQL database). In this way, we say that the LLM Mesh provides
“abstraction” between the high-level object and the underlying, spe-
cific service.

Figure 2-2 illustrates the objects of an LLM Mesh organized into
different layers that comprise the typical stack of an agentic applica-
tion, overlaying the typical stack of a traditional application.
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The Objects of an LLM Mesh
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Figure 2-2. The objects of an LLM Mesh in comparison with those of a
traditional application

Note that in Figure 2-2, the objects in the lighter-colored rectangles
are not themselves part of an LLM Mesh, but rather are abstracted
as the higher-level objects in the darker shade. This will be discussed
further in the retrieval services and tools sections below. In contrast,
traditional applications use Data Querying Services and API Serv-
ices directly, without abstraction as tools. Unstructured Data is not
used directly in traditional applications but is first transformed into
structured data using traditional natural language processing (NLP)
techniques.

Here is an overview of the different objects in Figure 2-1 and how
they relate to one another:

Large Language Models
The base model — the trained neural network comprising the

core mathematical weights — as described in Chapter 1.

Unstructured Data
Enterprise data that is not in tabular form. A common type of
unstructured data is documents, which may be in PDF, DOCX,
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or other formats. Unstructured data is abstracted as retrieval
services in an LLM Mesh.

Structured Data

Enterprise data that is in tabular form, typically stored in data-
bases, data warehouses, and data lakes. Structured data is stored
in data querying services, which are in turn abstracted as tools
in an LLM Mesh.

LLM Services

The services which are comprised of the hardware and software
systems used to deploy and interact with the model in real time.
As described in Chapter 1, these services may be managed by
the model developer, a third party, or internally by the enter-
prise.

Retrieval Services

A service that allows for the efficient and effective querying of
unstructured data. The retrieval services usually consist of an
LLM used for embedding, storage for the embeddings (which
can be either a dedicated vector store or another type of
database—SQL or search, for example—that has added these
capabilities), and some system for ranking the results to best
respond to the query.!

Data Querying Services

Databases and their associated query languages, like SQL, that
allow for the efficient retrieval of structured data. These systems
are abstracted in an LLM Mesh as tools.

API Services

Any internal or external API services to be integrated with the
agentic application. An external example could be a weather
service to look up a forecast, while an internal example could be
the data catalog to allow for data discovery. These services can
be very diverse and are abstracted in an LLM Mesh as tools.

1 As retrieval services are relative newcomers to the enterprise architecture landscape
and are themselves powered by LLMs, they are treated as distinct objects from other
tools in an LLM Mesh.
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Prompts
The input to the LLM services, they can be templated and
standardized and can run the gamut of prompting techniques
(few-shot, chain of thoughts, etc.).

Agent
An LLM-powered system that seeks to accomplish a certain goal
over multiple iterations within a defined level of autonomy, and
using tools to meet its objective. Note the centrality of agents
in this architecture. They are the object where the logic and
behavior of the application are defined.

Tool
Any function or resource that an agent can use to accomplish
its task. It can be a programming or querying language, an API
service, or even another agent.

Agentic Applications

An application that provides a user interface and other func-
tionality on top of the agent. A chatbot is one example of an
application type, but agentic applications could have many dif-
ferent types of interfaces running the gamut from dashboards,
to mobile apps, to assistants embedded in other applications,
to headless applications running behind the scenes and altering
users only when needed.

The Objects of an LLM Mesh in Detail

In this section, we will walk through each of the seven types of
objects that are used in building agentic applications in the enter-
prise. Each section will first define and describe the object.

At the end of each section, you will find a tip box titled “Thinking
Like an LLM Mesh”. This box describes the expected input and
output of each object. Recall that one of the main benefits of an
LLM Mesh is that it creates an abstraction layer that standardizes the
inputs and outputs of diverse services into standardized objects. The

tip boxes summarize what those standardized inputs and outputs
should be.

Building an agentic application requires integrating several different
objects. For example, a simple chatbot application using a retrieval
augmentation technique could be built using the following objects:
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o An application with a chatbot interface where the end users ask
their questions and receive their responses as well as provide
feedback to the developers.

o An agent, composed of several templated prompts, that defines
how the user’s question will be handled by the LLM.

o An LLM service that receives the question, tokenizes it, and
submits it to the LLM that will generate the response, enriching
it with an answer from a retrieval service.

o A retrieval service that provides access to unstructured data
from documents. The retrieval service is comprised of

— an embedding model that converts the text data to vectors
and

— a reranking model that will select the most relevant answer to
the user’s question, providing it back to the LLM service for
inclusion in the reply.

Such a chatbot could, of course, be built without an LLM Mesh
simply by building a monolithic application that calls the various
services, passing the results from one object onto the next. In prac-
tice, the developer of such an application would be writing many
API calls, each of which is specific to each service. If the developer
would later want to change, for example, from one third-party LLM
service to another, this would require manually updating the code
so that the application calls the new LLM service in the way that is
expected by that service.

In that scenario, an efficient application design would provide a
certain degree of abstraction, defining the interface with the LLM
service as a single function within the application and not specifying
the details of the API call in every instance where the LLM service is
called.

An LLM Mesh takes this abstraction further, completely separating
the service from the application and providing a standard interface
for all objects of the same type for use across all agentic applications
in the enterprise.

LLMs

We covered LLMs in detail in Chapter 1. When we talk about an
LLM, we are talking about a very large file, often measuring in
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gigabytes or terabytes. For example, the 405 billion parameters of
Meta’s Llama 3.1 model weighs in at 2.3TB. The majority of the data
volume is taken up by the weights of the model itself. Remember,
as described in Chapter 1, the weights of a model are simply a great
quantity of floating-point numbers.

If an organization is using a managed LLM service, they will never
interact with the model itself, only with the service endpoint. But, if
an organization self-hosts an LLM, then they will need to load the
LLM into their hosting infrastructure.

Thinking Like an LLM Mesh

From the perspective of an LLM Mesh, an LLM is thus an
object that can be interacted with in only two very simple
ways: It can be downloaded and updated in the environ-
ment where it is hosted. These two actions will generally
be done by interfacing with an API supplied by the model
provider or from an aggregator of models (a model hub)
such as Hugging Face.

LLM Services

An LLM service is a combination of storage resources, compute
resources, and supporting software that allows an LLM to be hosted
and accessed for inference.

The developer of the model may provide LLM services. For exam-
ple, OpenAl, Anthropic, and Mistral all provide services that run
their proprietary models. In these services, the end user does not
load the model into the service, they simply select the service run-
ning the model that they prefer.

Alternatively, an organization may choose to build and run its own
LLM service, managing the GPUs and associated technologies.

Finally, cloud service providers (CSP) offer managed LLM services.
In these, the end user may select the model that they wish to run,
but the CSP manages the compute and storage infrastructure.

An LLM service, be it hosted by your organization or by a third
party, is accessed via an API. Generally, most LLM services will
expect similar varjables when they are called. Those include:

o Which model version to use
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o A system prompt set by the developer to guide the model’s
completion

o The user prompt for the model to complete

o Temperature setting to define the level of randomness in the
response

o Alternatives to temperature, such as top_p or top_k, use differ-
ent sampling methods to determine which subsequent token to
select

In response to such requests, the LLM service will generally reply
with a response that includes:

o An indication of the type of response (e.g., text completion or
streaming chat)

« A unique identifier of the response
« The generated content
+ Reasons for why completion may have stopped

o Usage statistics about the number of tokens in the request and
response

Most services have broadly similar expected inputs and outputs.
An LLM Mesh abstracts and standardizes these inputs and outputs
through its abstraction layer, ensuring that the request sent to a
given service is formatted appropriately and uses the correct syntax.
When using an LLM Mesh to build an application that calls an LLM
service, the end user calls the LLM service object in the LLM Mesh,
indicating which service to use, and the LLM Mesh translates that
generic call into the specific call expected by the indicated service.

To better understand the value of providing a standard interface for
all LLM services, let’s compare the expected syntax of two common
providers, OpenAl and Google Gemini, starting with OpenAlI The
OpenAl documentation® gives the following example:

Ocurl https://api.openai.com/v1/chat/completions \
-H "Content-Type: application/json" \
-H "Authorization: Bearer SOPENAI_API_KEY" \
-d '{
"model": "gpt-40",

2 https://platform.openai.com/docs/api-reference/chat
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"messages": [
{
"role": "system",
"content": "You are a helpful assistant."
}s
{

"role": "user",
"content": "Hello!"

]
} 1
g

Let’s compare that with the expected request to the Google Gemini
API. Google’s documentation® gives the following specification:

Ocurl -X POST \

-H "Authorization: Bearer $(gcloud auth print-access-token)"
\

-H "Content-Type: application/json" \

https://${LOCATION}-
aiplatform.googleapis.com/vi/projects/${PROJECT_ID}/locations/$
{LOCATION}/publishers/google/models/${MODEL_ID}:streamGenerate-

Content \

-d '{

"contents": [{
"role": "user",
"parts": [{

"text": "TEXT"
1
1]
}
a0

These short samples from the documentation already show some
differences between the two APIs :

o OpenAl specifies the model in the JSON payload with the
model key-value pair, while Google specifies the model in the
URL path.

o The array containing the content of all messages is called mes
sages by OpenAl and contents by Google.

o Google nests an additional array, parts, within its contents
array.

3 https://docs.anthropic.com/en/api/complete
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An LLM Mesh standardizes these and other differences, allowing
for faster application development and easy switching between LLM
services. As LLM service providers update their services, the LLM
Mesh developer will update the Mesh accordingly, freeing the appli-
cation developers from the need to do so.

Thinking Like an LLM Mesh

As an object in an LLM Mesh, an LLM service expects
a prompt as input and is expected to provide text as its
output.

Retrieval Services

From the perspective of an LLM Mesh, a retrieval service takes
a user’s query as its input and provides a relevant result from
unstructured data as its output. It is how an agentic application
accesses unstructured data. In this context, the unstructured data
is text data coming from documents, often stored as PDFs, plain
text documents, or other common document formats, like DOCX.
Retrieval services allow agentic applications to make this data avail-
able to the employees of an enterprise by allowing them to discover
it more accurately and rapidly. Importantly, the information in these
documents is not only made available to the employees. It will
also be available for agentic applications themselves to inform their
inference on how to solve a problem. Retrieval services serve this
dual purpose: making the unstructured text data available to both
the employee and the agentic applications which, in both cases, leads
to better decisions.

In retrieval services, like traditional search systems that came before
them, there is usually a tradeoft between the speed of the results and
the quality of the results. While it is possible to have fast results or
good quality results, it is difficult to have both. Retrieval services are
usually made of three separate components to provide the highest
quality results as quickly as possible. These are:

« Embedding models, which will convert the text of the document
base, as well as the text of the query, into dense vector represen-
tations,

 Data storage, commonly vector stores, for storing the vectors
and performing efficient similarity search, and
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 Reranking models, to improve the quality of the search results.

Increasingly, these services are being provided as bundled services
from various providers, as their combined functionality is required
to provide the desired result to the end user: a relevant result from
unstructured data in response to a natural language query. From the
perspective of an LLM Mesh, the mutual dependency of these three
underlying technologies is why they are combined as a single object,
“retrieval services”

The following sections describe the components of a retrieval ser-
vice and some of the tradeoffs that the various choices will entail.

Embedding Models

As described in the previous chapter, embedding models trans-
form text into numerical representations called embeddings, stored
as high-dimensional vectors. For example, the word “banana”
might have the following embedding: [0.534, 0.312, -0.123, 0.874,
-0.567, ...] Each number represents the value of a particular dimen-
sion. If the vector had 100 dimensions, there would be 100 numbers
in the list.

These embeddings capture the semantic meanings of the text, such
that “Denver” and “capital of Colorado” will have similar vector
representations, even though they share no keywords, while “kid”
meaning “young goat” will have a different vector representation
than “kid” meaning “young human”.

Different embedding models use different embedding lengths,
meaning more or fewer dimensions for each vector. Put more sim-
ply, a shorter embedding length means fewer dimensions in each
vector, and thus fewer numbers in the list that represents each
word or part of a word. More embeddings require more storage
and compute resources. New embedding models, like OpenAT’s text-
embedding-3 family of models, allow for the embedding size to be
shortened to a degree specified by the user. Shorter embeddings
can have lower storage and computational costs but may result in
degraded performance. Model developers are working to increase
the performance of vectors with fewer embeddings.

Embedding models expect input text that has been pre-processed
to a certain degree. Different models have different requirements;
an LLM Mesh provides a standard interface that is mapped to each
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model. Pre-processing will generally include extracting the text from
any documents (e.g., PDF or DOCX formats), removing punctua-
tion, adding special tokens to tell the model about relevant breaks in
the text, and splitting longer documents into smaller “chunks” that
are sized appropriately for the embedding model.

In a retrieval service, embedding models serve the dual purpose of
converting the corpus of documents into vectors and then doing
the same for the query. Converting the corpus of text into vectors
is usually an offline task, done once while converting the query is
necessarily done at runtime, when the query is received from the
user.

Vector Store, or Other Data Storage

The embeddings are written to a data store, often a dedicated vector
store. A vector store is a database specially designed to store and
efficiently query high-dimension, dense vectors, like those created
by embedding models. Vector stores have built-in retrieval function-
ality for finding a stored vector most similar to the query vector,
usually using a cosine similarity function.

Traditional data stores — including relational databases like Post-
greSQL, document databases like MongoDB, search engines like
ElasticSearch, and graph databases such as Neo4] — are all adding
support for dense vector data types. As the use of vector data increa-
ses in the enterprise thanks to the growth of text embeddings used
in agentic applications, the use of these more traditional data storage
technologies may become increasingly relevant, reducing the need
for dedicated vector stores.

This evolving technology landscape is one more reason why
abstracting these services as “retrieval services” is important in an
LLM Mesh. While the underlying technologies may change, the
function remains the same: Provide relevant results from unstruc-
tured data to user queries.

Reranking Models

The vector store’s retrieval function will provide a fast result, but
it may not always be the most accurate. More accurate results can
be obtained by using the vector store’s retrieval function to narrow
down the results and then a reranking model to analyze the subset
more carefully selecting the best result to return.

The Objects of an LLM Mesh in Detail 45



In contrast to the retrieval function of the vector store, the reranking
model will take the entire source document plus the input query
for comparison. Given that the source data could contain thousands
or even millions of source documents, it would be too slow and
too costly to run that process across every document. By using the
retrieval function to narrow down the results to the top few (a
number which can be specified), and then running the reranking
model across the subset, you strike the best balance between speed
and quality. This is called two-stage retrieval.

The ranked results will be the output of the reranking model. The
retrieval system will provide the top-ranked result back to the user
in response to their query.

Thinking Like an LLM Mesh

As an object in an LLM Mesh, a retrieval service expects a
natural language query as its input and is expected to out-
put the top-ranked result from unstructured data. These
results are then generally passed on to an agent.

Prompts

Since the popular use of LLM-powered chatbots increased dramat-
ically following the release of ChatGPT and associated products,
many of us are now familiar with the notion of a prompt. A prompt
is the initial input (a question, a command, or instructions) pro-
vided to the model, prompting its response.

In contrast to the ad hoc prompting often used in consumer appli-
cations, prompting in the enterprise benefits from a structured,
templated, composable approach. This allows a bank of prompts to
be developed, tested, and then shared for reuse across the organiza-
tion. There are many different types of such prompts. The following
sections discuss several categories of prompts, with some simple
examples of each.

Role-Based Prompts

These prompts direct the LLM to respond as a specific type of
expert, such as a customer support agent or HR consultant, or guide
the Al on the tone, formality, and style of its responses.

Examples:
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o “You are an IT support technician. Assist the user in trouble-
shooting their software issue”

o “Respond in a professional and concise manner suitable for
senior management.”

Compliance and Ethical Prompts

These prompts direct the LLM to provide responses that adhere to
specific regulations or legal frameworks, or responses which follow
specific internal guidelines for ethical practices.

Examples:

+ “Ensure that no response contains personally identifiable infor-
mation (PII), such as names, phone numbers, or identifiers like
Social Security numbers.”

o “Generate responses that respect the following internal ethical
Al guidelines [corporate ethical Al guidelines].”

While using such prompt components can decrease the risk of non-
compliance, they cannot guarantee that any result will necessarily be
compliant. As such, human oversight is required.

Customization, Personalization, and Context-Specific Prompts

These prompts customize responses from an LLM based on known
information about a user or customer, a prediction about them, or
other relevant contextual information. The variables in the example
prompts below would be completed based on information in the
enterprise Customer Relationship Management system (CRM), cus-
tomer support records, or using the result of a predictive model.

Examples:

o “Personalize the marketing message for a [age]-year-old [gen-
der] living in [postal code]”

o “Recommend to the customer [result from next-best offer pre-
diction]”

o “Given the customer’s previous request about [subject of the
previous request], provide a relevant response.”
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Multi-Step Process Prompts

These prompts guide the LLM to respond in a multi-step process
by breaking down complex decisions into smaller, more manageable
steps. These multi-step process prompts are the building blocks of
agents.

Examples:

o “Step 1: Gather all financial data from QI. Step 2: Generate
a financial report. Step 3: Summarize the key findings in a
presentation”

o “First, evaluate the market demand. Next, assess the cost impli-
cations. Finally, recommend a go/no-go decision.”

Thinking Like an LLM Mesh

For the purposes of an LLM Mesh, prompts need to be
tested, approved, and published in the catalog, which we
will explain further later in this chapter. Any prompt must
be associated to a specific model and version, as small
changes in the model or prompt may result in dramatically
different prompt performance. These prompts can then be
combined with one another to compose more complex and
sophisticated prompts, themselves part of agentic applica-
tions.

Agents

While various definitions for “agent” exist, from the perspective
of an LLM Mesh, an agent is an LLM-powered system capable
of accomplishing its objective across multiple steps using tools,
without requiring prompting by an end user for each step.

Within an LLM Mesh, an agent is the object where the other objects
interact with one another to form a system that can respond to
users’ needs. They call one or more LLM services, they use several
templated prompts and use one or more tools. As such, agents are
some of the most important objects within an LLM Mesh and are at
the core of building agentic applications in the enterprise.

Like the other objects, they must be built, described, cataloged, and
maintained. As the maturity of an organization increases, it will
begin to develop more agents, and will likely start chaining those
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agents together, with one agent using another as a tool. This increas-
ing complexity can be tamed by the abstraction and modularity that
the LLM Mesh offers.

There are a few important parts to the above definition of an agent,
so let’s look at them one by one.

Objective

An agent’s developer will define its objective by giving it a role-based
prompt, as described in the previous section. For example, an agent
that is part of an application that is designed to generate real-time
sales analytics could include the following role-based prompt tem-
plate:

You are a Business Intelligence Analyst with access to the
company's sales data across various regions and time periods.
Your role is to assist in retrieving specific data as reques-
ted by the user and to provide additional analysis that high-
lights any interesting, unusual, or noteworthy aspects of the
data, just as a human analyst would do.
When the user makes a request:
1. Accurately identify the relevant data source and retrieve
the specific data they are asking for.
2. Perform a detailed analysis on the retrieved data to
uncover any trends, anomalies, or key insights. Consider
aspects such as:

- Comparisons with previous periods or other regions.

- Significant changes or trends in the data.

- Potential reasons behind the observed data patterns.

- Any other insights that might be valuable for the user to
know.
Finally, present the data and your analysis in a clear, con-
cise summary that the user can easily understand.
If the user’s request is unclear or requires data from mul-
tiple sources, use your judgment to clarify the request and
combine data sources as needed to provide a comprehensive anal-
ysis.

In this example, the objective is clearly described, as is what the
agent should do if the end user asks it to do something outside of its
prescribed scope.

Multiple Steps

Agents will execute multiple steps to meet their objectives. These
individual steps are linked in chains, which define the steps the
agent must take to meet the objective. This differentiates agents
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from the simple, direct prompting of an LLM. For example, asking
an LLM to summarize a block of text cannot be considered an agent
because it is a single step.

Take for example an agent that has been built to summarize finan-
cial reports. The multiple steps might be:

Call an API to download the desired report(s)

Locate and extract key figures from the report

Look up historical values for these figures and compare them

Extract key quotes from the report

SN I

Generate a semi-templated summary that includes both extrac-
ted quotes, generated summary text, and comparison between
historical and current figure

6. Send the report to the recipient over the specified channel

Each step would include a templated prompt that would be modi-
fied with either the user input or the LLM output from the preced-
ing step. The steps are strung together in a chain, which may be
sequential, looping, branching, or parallel chains. Throughout this
process, multiple calls to the LLM service will occur without any
user involvement.

Autonomy

An agent is granted some degree of autonomy. Using the analytics-
generating agent as an example, a minimal degree of autonomy may
simply be deciding which Python package or function to use during
the data analysis step. A more significant degree of autonomy may
be choosing the tool that it will use to meet its objective from several
made available to it (e.g., deciding if it should query historical data
from a data warehouse or live data from a CRM to best respond to
the user’s request).

Less autonomy will mean that the agent is less flexible in the type
of problem it can solve, but more likely to give a good result in
that narrower range. More autonomy will mean more flexibility,
but more risk that the results will not be satisfactory. In the enter-
prise, agents are likely to be quite limited in their autonomy, with
narrowly defined options available to them, especially during the
early stages of their development and use. This may change over
time as models and agent-building techniques evolve and improve.

50 Chapter 2: Objects for Building Agentic Applications



Tool Use

A defining characteristic of an agent is its use of tools to accomplish
its objectives. These tools are described in more detail in the follow-
ing section.

Thinking Like an LLM Mesh

As an object in an LLM Mesh, an agent expects some task
as an input and is expected to provide a satisfactory result
as an output. This broad definition reflects the breadth of
what agents can be built to accomplish.

Tools

In an LLM Mesh, a tool is any function or system that an agent
is provided with to accomplish its task. As such, tools cover a
very wide range of potential technologies. This breadth gives agents
and agentic applications their incredible potential: they can auto-
mate and accelerate tasks, decisions, and operations that otherwise
require manual work across the enterprise and its business systems.

The types of systems that can serve as tools in an LLM Mesh include
but are not limited to:

o Internal data storage and retrieval systems, such as databases,
data warehouses, and data lakes.

o Enterprise software systems, such as CRM, Human Resources
Management System (HRMS), and Enterprise Resource Plan-
ning (ERP) systems.

o Advanced analytical assets, like predictive machine learning
models.

o Programming and querying languages, like Python and SQL,
along with specific packages or proprietary code.

« External data APIs, such as financial data or weather services.
o Other agents within the LLM Mesh

For an agent to use a tool, it needs to understand what the tool
is and how to use it. This is accomplished by creating a schema
for each tool. This schema is what allows for some standardized
interaction with the tool, despite the great diversity of tools that may
exist in the LLM Mesh. The schema should include:
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o A description of the tool, including examples of the circumstan-
ces in which it should be used.

o Instructions on how to interact with the tool, including what
input is expected and what output is expected.

« Connection details for accessing the tool.

By ensuring that each tool has a well-described schema, the tools
can be used across different agents, including those with a high
degree of autonomy, as those agents will rely on the descriptions in
the schema to decide which tool to use.

Thinking Like an LLM Mesh

As an object within an LLM Mesh, a tool provides a
schema, making itself available for use by an agent. The
tool expects an input and provides an output as defined
in that schema. Tools are very flexible and their schema is
essential to their use by agents.

Applications

In an LLM Mesh, an application is what makes an agent available
to end users. The agent defines the logic that orchestrates the differ-
ent objects from the LLM Mesh that are required to accomplish
a specific purpose. The application is the interface and supporting
functions that allow the end users to interact with the agent, to
better understand the results provided by the agent, and to provide
feedback to the developers. The application is also where certain
services providing security, safety, and cost control are enforced.

There are several types of agentic applications, including:

o Chat interfaces where users interact with the agent iteratively.

» Contextual assistants, either as desktop applications or browser
extensions, that provide some additional functionality or assis-
tance in the context where the user is working at that moment.

» Backend or “headless” applications that run without direct end
user interaction.

Agentic applications can have a wide range of interfaces and func-
tionality. The abstraction and standardization within the LLM Mesh
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makes it simpler for the developer to build the application in a way
that clearly communicates to the end user how the agent underpin-
ning the application is generating its results.

For example, in the case of an application that exposes an analytics-
generating agent to end users, it will be easier for the end user
to understand and trust the results if the application distinguishes
between outputs that come from a query to a retrieval system or
a tool versus outputs that are the result of the LLMs interpretation
or suggestion. Furthermore, the end user will also be more likely to
trust results if they can verify that the sources used, and the query
that the LLM generated, are appropriate for the objective of the
application.

Feedback mechanisms should also be built into the application to
ensure that when an agent does not behave as expected, end users
can flag this anomaly to the developers so that they can monitor the
agent’s performance and take corrective action if necessary.

Thinking Like an LLM Mesh

Within an LLM Mesh, the application object includes the
application itself, versioning for the deployed application,
and logging of user interactions with the application.

Cataloging LLM-Related Objects

As an organization begins developing more agentic applications, the
number of different objects it will need to use to build those appli-
cations will grow rapidly. This could become difficult to manage,
with users hunting for different objects, recreating existing objects,
or using unapproved objects.

Overcoming these challenges starts by creating a central catalog for
all of these objects. This catalog is a fundamental component of an
LLM Mesh. The catalog should:

o Account for all LLM-related objects that are available for use in
the enterprise.

 Provide documentation that describes and provides instructions
for using each object.

o Track the version or other details about the ownership and
development history of the object.

(ataloging LLM-Related Objects 53



o Assign a unique ID to each object to allow it to be referenced
and tracked unambiguously.

This information is stored in a structured format that allows human
and machine discovery of the available objects. Having a central
catalog of the objects provides various benefits for organizations
as they begin building more agentic applications. Those benefits
include:

Standardization
Only approved objects can be added after a vetting process.

Governance and Compliance
You can maintain full transparency and traceability of which
data are used with which LLM for which purposes, enabling
business alignment and regulatory compliance.

Security
The catalog allows access controls to be defined and enforced,
controlling which end users and automated systems have access
to what objects.

Composability
Once registered, objects can be easily added to new applications
where they are combined with other objects, accelerating the
development process.

Efficiency
Less time is spent manually connecting different objects, accel-
erating application development.

Importantly, this catalog will be useful for both the end users and
the LLM-powered agents that they will be building. The agents will
also rely on the documentation to discover and use the objects and
the agents will be subject to the security model.

Conclusion

In this chapter, we have learned about the various objects of an
LLM Mesh, how they are abstracted, and how they can be integra-
ted with one another. The final chapter of this guide will go into
greater detail about how a specific agentic application can be built
using an LLM Mesh. Before getting to that, however, the following
chapters will describe the various federated services that an LLM
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Mesh must also provide to meet enterprise security, reliability, and
cost requirements for the many agentic applications that will be built
within it. Chapter 3 will start with that most important of enterprise
considerations: cost. How can the overall cost of an enterprise’s LLM
use be optimized? Read on to learn more.
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CHAPTER 3

Quantifying and Optimizing the
Cost of LLMs in the Enterprise

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 3rd chapter of the final book.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

At the beginning of Chapter 2, we established the importance of
an organizations ability to develop its own agentic applications.
These built-for-purpose applications will allow the organization to
differentiate itself from its competitors, pulling ahead in the market.
That said, developing and running them will come at a cost.

Chapter 2 established how an LLM Mesh will simplify and standard-
ize the development of these applications, thus reducing the cost
of their development. However, agentic applications will also incur
costs as they run. Minimizing costs while maintaining the required
level of performance will allow an organization’s budget to go fur-
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ther, supporting the deployment of these built-for-purpose agentic
applications across more functions of the organization, thereby get-
ting more return from the same investment in Al

It is critical not to consider cost in a vacuum,; rather, it must be con-
sidered in conjunction with performance. If an organization were
to drive down its spending on Al blindly (for example, by using
smaller models or cheaper services), it could find that its agentic
applications are no longer delivering adequate performance or could
stop functioning entirely. On the other hand, if an organization had
a policy of always using the highest-performing model, it would
likely end up overspending for a level of performance that is, in
fact, not needed. The answer is to find the balance where cost is
minimized for an adequate level of performance. The necessary level
of performance, both in terms of speed and quality of output, will
depend on the specific requirements of each application. Thus, the
goal is neither minimal cost nor maximal performance but rather
minimal cost while delivering the required performance.

An LLM Mesh must provide the federated services required to
measure and track cost and performance across the many different
components used to build agentic applications. By using these feder-
ated services for cost and performance tracking in an LLM Mesh,
organizations can fully understand where their AI budget is going
and enforce policies to get the most return on that investment.

We will tackle the topics of cost in performance in both this chapter
and in Chapter 4. In this chapter, we'll first understand the drivers
for the cost of the different objects in an LLM Mesh, especially the
different types of LLM services. Then, we will look at techniques
for limiting costs. Finally, we'll consider the organizational practices
needed to run a cost-efficient Al practice using an LLM Mesh, cov-
ering topics like cost reporting, budgeting, and rebilling. Through-
out, we'll refer to the need to consider performance tradeoffs when
making decisions to reduce costs. Rest assured that we will bring
much more precision to performance measurement and monitoring
in Chapter 4.

Quantifying the Costs of Agentic Applications

In this section, we will understand how agentic applications gener-
ate costs. We'll start with a quick review of the objects of an LLM
Mesh to determine which are cost-generating and which are not.
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From there, we'll then dive deep into the costs of the different types
of LLM services, including those provided by model developers,
CSPs, and those that you manage yourself. Finally, at the end of this
section, we'll compare two different agentic applications to see how
choosing different LLM services impacts their costs.

The Objects in an LLM Mesh That Drive Costs

Let’s begin by breaking down the cost structures of the different
objects in an LLM Mesh. Recall from Chapter 2 the seven main
objects of an LLM Mesh: LLMs, LLM services, retrieval services,
prompts, agents, tools, and applications. Of these seven objects,
some are cost generating and others are not, as follows:

Non-Cost-Generating Objects in an LLM Mesh

Prompts
Like code or documentation that an organization would develop
and manage, prompts themselves have no direct cost.

Agents
Agents are logical objects and thus generate no direct cost
themselves, though when used, the underlying LLM services,
retrieval services, and tools will generate costs.

Agentic Applications
Like the agent, the code of an application generates no direct
costs.

LLM:s

As data objects, the LLMs themselves incur no direct costs,
though their use through LLM services (below) does. Any
licensing fees for proprietary LLMs are baked into the cost of
using the service. (An exception to this would be a proprietary
LLM that is licensed for use in a private deployment, where that
licensing cost would need to be factored into the total cost, in
addition to the cost of running the hosting service yourself.)
Cohere, AI21 Labs, and Aleph Alpha are examples of model
developers who offer their proprietary LLMs to be licensed for
private deployment.
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Cost-Generating Objects in an LLM Mesh

LLM Services
LLM services are the workhorses of agentic applications and
their main cost drivers. Several different cost models for LLM
services will be explored in more detail in the following sec-
tions.

Retrieval Services
Retrieval services generate costs per use, much like the LLM
services that often underpin them.

Tools
Certain tools, like data querying services, are fixed costs that
the organization already bears, whereas others, such as external
APIs, will generate costs per use.

The cost monitoring and control services of an LLM Mesh will
focus on the LLM and retrieval services. The costs of the tools (data
querying services, API services) are either fixed costs that don’t vary
with application usage or are already well-managed by existing API
cost tracking and management solutions. The services of the LLM
Mesh need to be adapted to the cost structures and cost control
techniques unique to LLM services and retrieval services, which are
new assets in the enterprise IT landscape.

Additional Costs in an LLM Mesh

In addition to the costs of the objects combined to build agentic
applications, organizations may incur the following costs:

o Licensing fees for any LLM Mesh services for analysis and con-
trol,

o Licensing fees for a cataloging and documentation solution,
o Licensing fees for other components of an LLM Mesh,

o The costs of developing and maintaining any of the LMM Mesh
components or infrastructure that they do not license from a
software vendor. Note that these costs, which may be significant,
are out of the scope of the LLM Mesh and, thus, this guide.

Whether these components are licensed separately, as part of an
all-in-one LLM Mesh solution, or developed internally will depend
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on the organization’s LLM Mesh strategy, and each approach has
different costs.

Understanding the Costs of LLM Services

You must set up your LLM Mesh to capture the total costs of all
agentic applications in a normalized way, allowing for their compar-
ison and aggregation. By having a comprehensive and comparable
way of looking at the costs of different LLM services, organizations
can more easily build capabilities that combine models from differ-
ent providers to strike the optimal balance between cost and perfor-
mance across their entire fleet of agentic applications. Without the
cost tracking and control services of an LLM Mesh, the costs of
these different services are difficult to compare and control, making
it challenging for organizations to optimize their spending

As described in Chapter 1, there are three main types of LLM
services based on where the LLM is hosted:

Model developer-managed services
These are the LLM services offered directly by model devel-
opers, such as OpenAl, Google Gemini!, Anthropic, Cohere,
or Mistral. They are Model-as-a-Service (MaaS) offerings, and
costs are calculated on a per-token basis. Many developers will
offer both on-demand pricing and reduced batch pricing.

Cloud Service Provider-managed services

These are the LLM services offered by cloud service providers
(CSPs) such as Amazon Web Services (AWS), Microsoft Azure,
and Google Cloud Platform (GCP). The cloud platforms have
given specific branding to their LLM services: AWS Bedrock,
Google Vertex Al, and Microsoft Azure AI Studio®. These serv-
ices generally offer access to a number of curated LLMs that
can be deployed on managed compute environments or as ser-
verless Maa$ instances.

1 Google offers both its Gemini model directly to customers, as well as through its
Google Vertex Al product. The Google Vertex Al product offers the models of other
developers as well. We will refer to the Gemini direct offering as “Google Gemini” and
the offering that includes models from other developers as “Google Vertex AI” to avoid
confusion.

2 Microsoft Azure’s foundation model catalog is also accessible through their Azure
Machine Learning Studio product.
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Self-managed services
Organizations may choose to manage their LLM services them-
selves. In this case, they may rent a server from a cloud provider
or provision an on-premises server for themselves.

The following sections will explore the details of these different
options and their pricing models, giving some examples of how
those pricing models impact total costs. As you will see, there are
diverse pricing models and options available, making the centrali-
zation and normalization of the cost service of an LLM Mesh an
essential element for deployments that go beyond initial testing and
experimentation.

The Cost Model of Developer-Hosted LLM Services

The pricing model for the LLM services offered by the model devel-
opers mostly follows the same MaaS structure: a price per token
input (i.e., the prompt) and a price per token output (i.e., the gener-
ated instructions). The price per output token is generally three to
five times as expensive as per input token. Table 3-1 summarizes the
on-demand pricing of several developers’ flagship models, showing
the discrepancy between input and output tokens.

Table 3-1. On-demand pricing of developers’ flagship models as of October
2024

Developer and Model Input Tokens (per TM  Output Tokens (per
tokens) 1M tokens)

OpenAl GPT-40 $2.50 $10.00

Google Gemini 1.5 Pro (>128k context $2.50 $10.00

window)

Mistral Large 2 $2.00 $6.00

Anthropic Claude 3.5 Sonnet $3.00 $15.00

These services will typically offer their latest models at a few dif-
ferent sizes, with larger models being more expensive and smaller
models being cheaper. They may also offer specialized models, such
as those for generating text embeddings, generating images, or gen-
erating code.

In addition to paying as you go, some model providers are begin-
ning to offer options for reducing costs through two different
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approaches: offering lower pricing for asynchronous batch process-
ing and reducing the input tokens needed through context caching.’

Batch Processing

While some applications, like chatbots, require immediate responses
from LLM services, other applications do not. For example, using
an LLM to classify the sentiment in a large dataset of historical
customer reviews can be done asynchronously, with the request
being sent and the response being returned sometime later. In the
case of OpenAl, a 24-hour turnaround time for all batch jobs is
guaranteed. Check with your provider to see if they provide reduced
pricing for batch processing, it could be a valuable source of savings
for the right kind of application.

When implementing an LLM Mesh, be sure to do so in such a way
as to take advantage of batch processing where the LLM service
offers it. And be sure that the LLM Mesh takes the price difference
into account for cost tracking and analysis.

Context Caching

There are some cases where you will include repeated information
in a prompt submitted to an LLM service. For example, a chatbot
may include a lengthy system prompt at the beginning of each
request to ensure consistent and appropriate behavior. The LLM ser-
vice will retain a cache of these input tokens and can use that cache
instead of the new tokens, resulting in reduced latency and cost.
Some of the LLM services pass these savings on to their customers.

Google Gemini prices cached input tokens at a 75% discount for
uncached tokens, while OpenAl offers a 50% discount for cached
tokens. Both the OpenAl and Google Gemini services apply caching
automatically — no change to your API calls is required to take
advantage of it. That said, it is important to carefully read the
developer’s documentation to understand under what conditions
cached tokens will be used so that you can create the conditions to
maximize these savings. For example, OpenAl only checks the first
few tokens to determine if the cache should be used or not, meaning

3 As of October 3, 2024, OpenAI and Google Gemini offer both batch processing
and context caching, and Anthropic offers context caching (called Prompt Caching).
Cohere and Mistral do not currently offer these options.
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that you need to structure your prompts such that the repeating
information is always at the very beginning.

The LLM services will report when cached tokens are used. An LLM
Mesh should track this and tabulate costs accordingly.

The Cost Model of (SP-Managed LLM Services

The major cloud providers have all introduced managed services
that allow popular open-source and proprietary models to be
quickly deployed on infrastructure managed by the cloud provider.
This can be a quick way for organizations with an existing relation-
ship with one or more CSPs to test and begin building with LLMs
from different developers.

In contrast to the offers from the model developers, which all follow
a Maa$ paradigm, the CSPs offer more pricing models and options.
This introduces some additional complexity, but it also introduces
more options that allow an organization to optimize for cost and
performance as well as data residency.

AWS, Azure, and GCP all offer two main pricing models: on-
demand and provisioned throughput.

On-Demand Pricing

On-demand is a MaaS offer that is billed on input and output tokens
(like the MaaS$ offers from the model developers). In most cases,
the models offered for on-demand pricing will come from several
curated developers. For example, in addition to its own Gemini
models, Google Vertex AT offers models from AI21 Labs, Anthropic,
and Mistral. There is thus a tradeoff between the convenience of the
fully managed MaaS$ offer and the full choice of models available on
model hubs, such as HuggingFace.

In contrast to the offers of the model providers described previously,
only AWS Bedrock offers batch pricing for their on-demand offer,
giving a 50% discount. This pricing is only available for certain
models in certain regions.

Provisioned Throughput

In contrast to their on-demand offers, the provisioned throughput
offers from the CSPs reserve a defined amount of model capacity
for a given amount of time. The primary benefit is guaranteeing
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resource availability for your applications. Thus, it is not primarily a
cost-saving strategy, but rather a way to guarantee the availability of
required resources. That said, longer reservation periods result in a
discount over the CSP’s on-demand pricing.

In contrast to the per-token pricing of on-demand offers, provi-
sioned throughput offers are less transparent. In a provisioned
throughput offer, you reserve “model capacity” which each CSP
defines and names differently. On Azure, they are known as “Provi-
sioned Throughput Units” and an estimator tool is provided, but not
the underlying formula. On AWS Bedrock, they are named “model
units” and you must contact your account manager to estimate the
quantity that you would need.

Provisioned throughput offers are best adapted to applications that
have already been tested and deployed to production and thus
where the expected usage is relatively certain. If you have an applica-
tion where you anticipate variable usage, the on-demand offers are
probably the best bet.

CSPs generally do not provide as many models in their provisioned
throughput offers as they do in their on-demand pricing offers.
For example, Google only offers its Gemini models for provisioned
throughput, and Microsoft Azure only offers models from OpenAl
AWS Bedrock offers both its Titan family of models and models
from other developers.

The Cost Model of Self-Managed LLM Services

The previous two categories of managed services offer much conve-
nience, but at the cost of control. While it is easy to begin using
the managed services with a simple API call, you are limited in
the models available and other aspects of the deployment. If more
control over those details is required, then an organization may
consider self-managing its own LLM services. This can be done
by renting a server instance from a cloud provider or using an
on-premises server, typically maintained by your organizations IT
department.

Cost will be an important consideration when deciding whether to
deploy self-managed LLM services. In contrast to the per-token or
model unit costs of the managed services, the direct costs of the
self-managed services will be the hourly cost of the server instances.
The costs will thus be fixed, independent of the number of tokens
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you push through the service. A cost-conscious organization would
thus seek to maximize the use of its service without overloading it
and degrading its performance. A delicate balance must be struck,
for sure!

The cost model for a self-managed LLM service will first depend
on whether you are renting the instance from a cloud provider or
using an on-premises server. In the case of an on-premises server,
the cost model will depend on your organization’s internal rebilling
policies. In the case of instances rented from a cloud provider, two
primary cost models exist: on-demand usage, and savings plans that
require a long-term commitment, typically one or three years. The
following sections explore these in more detail.

The pricing of the server instances available to rent from the major
cloud providers will depend on its combination of GPU memory,
compute, and storage resources. GPU memory is generally the con-
straining resource that you need to take into account, depending
on the size of the LLM that you would like to host. This is because
all of the model’s weights need to be loaded into the GPU memory.
Very large models with tens or hundreds of billions of parameters
will exceed the memory of even the largest single GPUs and must
therefore be deployed to multi-GPU instances. To choose the right
server, you will need to estimate the throughput required for the
anticipated use of your application(s).

You will need to ensure that the server instance has all of the neces-
sary drivers and software to serve the models. The cloud providers
typically offer base images for these instances that provide the nec-
essary drivers, but be sure to check the documentation from the
model developer to make sure that you are not missing anything.

Costs of Self-Managed, On-Demand Cloud Server Instances

On-demand servers are usually priced per hour, and you begin
paying the moment that it is activated, regardless of the number
of tokens that it is processing. In this way, it is a fixed cost. It is
important to thus spin down any instances that are not in use.

Even though the cost of the instance is expressed per hour, most
CSPs offer finer granularity for billing, often down to the second. So
if you use the instance for 8 hours, 12 minutes, and 23 seconds, you
will only pay for those 29,543 seconds.
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That said, be wary of attempting to over-optimize your instances
by spinning them up and down too frequently, as there will be a
cost in terms of latency. It will usually take a few minutes for an
instance and the connected services to come fully back online and
to be available for use. Thus, “on demand” only refers to the lack
of long-term billing commitment and should not be misinterpreted
as meaning “available for immediate use” On-demand instances
are most appropriate for predictable workloads that will remain
constant for a period of time.

Costs of Self-Managed, Long-Term Cloud Server Instances

If you expect the workload of your application to remain constant
over a year or more, long-term commitments can be very cost-
efficient. By agreeing to pay for a predetermined volume of server
usage, the CSPs will usually offer a discount over the equivalent
on-demand price. The discount rate will depend on the instance
type, the region, and whether you pay upfront. Discounts can be
as large as 70% but may be smaller in practice, particularly for
in-demand instance types like those for LLM workloads.

Note that the commitment implies that the instance is paid for the
entire duration, meaning that you cannot spin it down during peri-
ods of unuse. Thus, a three-year commitment implies multiplying
the hourly cost by the number of hours in three years (26,280,
assuming there is no leap year).

Costs of Self-Managed, On-Premises Server Instances

Some organizations, though fewer and fewer all the time, prefer —
or are required — to manage their server infrastructure. If your
organization operates this way, you are undoubtedly aware of it
already, and you are undoubtedly aware of the process of gaining
access to these resources. In this case, a guide like this will not be
able to provide you with detailed information, as the costs and how
they are rebilled will depend on your organization’s practices.

In all cases, an LLM Mesh should allow you to move easily among
the services available to your organization and must capture the
costs of all different types of services. As the pricing of many hosted
services is not available programmatically (i.e., they can not be
looked up via API), an administrator of your LLM Mesh should
track them and update them carefully to ensure that the cost data is
captured accurately.
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Comparing the Costs of Applications

To make these differences more real, let's imagine two different
applications in a large enterprise. These applications will have very
different usage scenarios to show the consequences of using differ-
ent applications with different services.

Application 1: Company-Wide Knowledge Assistant

This first application is a knowledge assistant application that uses
a RAG pipeline to surface relevant information to the user from
an internal document base. We imagine this application will be
deployed in a large, global enterprise. As a result, it sees relatively
constant usage across time zones and throughout the year. As a
RAG application, a large volume of text extracted from the source
documents is passed to the LLM service in the prompt, resulting in
a large volume of input tokens. Lets build out a low-volume and a
high-volume scenario to estimate the total token count for the LLM
service over a year; those estimates are shown in Table 3-2.

Table 3-2. Usage hypotheses for company-wide knowledge assistant
application

Low Usage Scenario  High Usage Scenario

Input Tokens per Session 5,000 15,000

Output Tokens per Session | 500 5,000

Sessions per User, per Day 5 20

Users 1,000 1,000

Working Days per Year 250 250

Total Input Tokens per Year | 6,250,000,000 75,000,000,000
Total Output Tokens per Year | 625,000,000 25,000,000,000

Now, let’s compare the costs of running this application against two
different LLM services. The first is an on-demand service from a
model provider. We'll use OpenAl in this example. The second is a
self-managed cloud server from AWS. This type of application does
not need the advanced reasoning capabilities of the largest, most
sophisticated models. As such, welll choose the OpenAl GPT-40
mini as the MaaS option. This scenario is detailed in Table 3-3.
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Table 3-3. Pricing scenario for OpenAl GPT-40 mini on-demand as of

October 2024

Low Usage Scenario  High Usage Scenario

Total Input Tokens per Year | 6,250,000,000 75,000,000,000
Total Output Tokens per Year | 625,000,000 25,000,000,000
Input Price (per TM tokens) | $0.15 $%0.15

Output Price (per 1M tokens) | $0.60 $0.60

Total Input Cost $937.50 $11,250.00
Total Qutput Cost $375.00 $15,000.00
Total Cost $1,312.50 $26,250.00

For the self-managed option, we will select the Llama 3.2 11B model
and will run it on an AWS g5.2xlarge EC2 instance. This instance
should be sufficient for the hypothetical usage, but it is important
to model the required resources appropriately for your expected
use, as different instance configurations have very different prices.
In this scenario, we will compare the costs for no commitment (on-
demand), a one-year commitment, and a three-year commitment.
As these costs are fixed regardless of usage, they would be identical
for the low and high usage scenarios; hence, we show cost in col-
umns per commitment period.

Table 3-4. Cost for AWS EC2 g5.2xlarge (US East, Ohio) as of October
2024

No Commitment (on-demand) 1-Year Commitment 3-Year Commitment

Cost per Hour | $1.21 $0.95 $0.65
$10,617.12 $8,360.98 $5,733.24

Cost per Year

In most cases, self-managing the AWS EC2 instance would be less
costly, with the exception of the lowest usage scenario. In the high
usage scenario, making a three-year commitment and self-managing
the EC2 instance delivers 78% savings. This shows the importance
of accurately estimating and monitoring your usage of LLM services
and making the correct choice per application.

Application 2: Corporate Strategy Sparring Partner

Let’s now imagine a very different application. This application is
built on top of an agent that is designed to support the strategic
planning activities of the senior leadership and corporate strategy
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teams. It is used far less per year, by far fewer people. That said,
the usage is very intensive, and it requires a very large, very capable
model. Lets go through the same exercise, starting with the usage
hypotheses.

Table 3-5. Usage hypotheses for corporate strategy sparring partner
application

Low Usage Scenario  High Usage Scenario

Input Tokens per Session 5,000 50,000
Output Tokens per Session | 5,000 25,000
Sessions per User, per Day 10 50

Users 20 20

Working Days per Year 50 50

Total Input Tokens per Year | 50,000,000 2,500,000,000
Total Output Tokens per Year | 50,000,000 1,250,000,000

As with the previous application, let’s now consider the costs of
running this application. To keep the comparisons similar, we'll use
OpenAl again as the Maa$ provider, but we'll select their flagship
model, GPT-4o.

Table 3-6. Pricing scenario for OpenAI GPT-40 on-demand as of October
2024

Low Usage Scenario  High Usage Scenario

Total Input Tokens per Year | 50,000,000 2,500,000,000
Total Output Tokens per Year | 50,000,000 1,250,000,000
Input Price (per TM tokens) | $2.50 $2.50

Output Price (per 1M tokens) | $10.00 $10.00

Total Input Cost $125.00 $6,250.00
Total Output Cost $500.00 $12,500.00
Total Cost $625.00 $18,750.00

Imagine now that you want to self-manage this application. You
want to use a large and highly capable model, so you choose Llama
3.2 90B. Given the size of this model, you will need to use an EC2
instance with multiple GPUs, in this case, a g5.12xlarge. That choice
results in the pricing shown in Table 3-7.
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Table 3-7. Cost for AWS EC2 g5.12xlarge (US East, Ohio) as of October
2024

On-Demand  1-Year Commitment  3-Year Commitment

Cost per Hour | $5.672 $4.4667 $3.06288
Cost per Year | $49,686.72 | $39,128.23 $26,830.83

For an application that is only used for part of the year and requires
a high-performing model, the most cost-efficient approach will be to
use the MaaS$ offering from the model provider, even in the highest
usage estimate. Paying for a self-managed instance of sufficient size
for the model required would be wasteful.

We've intentionally constructed the high and low usage estimates to
show the high potential variability between applications. For exam-
ple, applications with an agent can cycle through many prompts and
responses during chain-of-thoughts reasoning. This can result in a
large volume of both input and output tokens that the end user
never sees but which are necessary to the proper functioning of the
application. Monitoring this spending is essential to make sure that
the budget is used wisely and that costs are minimized.

Techniques for Limiting Costs

In the previous sections, we reviewed how to measure and monitor
costs in an LLM Mesh. Now, how can you limit costs, and how
should you approach a new project in a cost-conscious way?

When building out a new agentic application, a good rule of thumb
is to start by defining the level of performance that you need for
a given application without much consideration for cost. This is
because it is important to confirm if the application will work at
all and not be left wondering if it would have worked if a more
powerful and more costly model had been used instead. Thus, you
should start with a large, high-performing LLM that will allow you
to build out your application quickly. Then, once you have achieved
the level of performance that you need, you can start optimizing
your application, testing lower-cost models and techniques to main-
tain the level of quality and speed that your application requires
while minimizing the cost. The following sections review some of
these techniques.
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LLM and LLM Service Selection

The simplest method of reducing cost is to switch to a cheaper LLM
service that provides the required level of speed and performance.
There are two ways to think about this: model upgrade and model
substitution.

Model Upgrade

Upgrading a model is when you move from one model to its suc-
cessor. For example, upgrading from OpenAl’s GPT-4 to GPT-4o.
The good news is that, given the rapid rate of development in the
space today, the new generation of a given model is often both better
performing and cheaper than its predecessor. Such is the magic of
living in a time of rapid technological progress, and while this trend
may not continue, you should take full advantage of it.

An LLM Mesh should monitor for these upgrade opportunities and
then facilitate the rapid testing to confirm that the new model does,
in fact, provide improved application performance. You may ask,
“How could it not?” While the new model will almost certainly out-
perform the previous model on the benchmark metrics, that does
not necessarily mean that it will automatically improve the overall
performance of the application. For example, your application may
depend on very carefully crafted prompts that exploit some quirk
of the outgoing model. The new model may not behave in precisely
the same way, leading to degraded performance. Once you adapt the
prompts to the new model, you can likely achieve equivalent, if not
improved, performance at equivalent or lower cost.

Upgrading a model may seem like a trivial task. However, the many
steps in the previous paragraphs demonstrate several of the benefits
of using an LLM Mesh. First, with an LLM Mesh it is quick to intro-
duce the new model — no application logic needs to be changed.
Second, performance measurement in the LLM Mesh allows the
developer to quickly measure the performance with the new model,
taking corrective measures if needed. Finally, cost tracking would
show the difference in the cost between the application with the old
model and the application now with the new model. By reducing the
effort required for each of these tasks, an LLM Mesh makes it easier
and faster to improve agentic applications, integrating improved
models as quickly as they become available.
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Model Substitution

In addition to upgrading to a new version of the same model, a
viable option may be to consider a different model or family of
models. Here, the decision will not be triggered by the release of a
new model. Instead, a team will seek opportunities to reduce the
cost of its application, testing lower-cost options to see if they can be
used while maintaining the quality required for the application.

Service Substitution

Finally, in certain situations, consider migrating from one LLM ser-
vice to another, even if the underlying model is the same. For exam-
ple, imagine an internal knowledge management chatbot that sees
regular, predictable usage throughout the year. Your organization
anticipates that it will continue to use this application for several
years without much modification. If it runs on a CSP-managed
instance with their on-demand option running an open weights
model (Llama 7B, for example), you could consider migrating to a
self-managed service running on a server instance with a long-term
commitment to reduce your costs. Note that it will now be incum-
bent upon your organization to manage this service.

Prompt and Inference Optimization

Whether using a managed service or self-managing your LLMs,
optimizing your prompts to use fewer input and output tokens
while delivering the desired results is one of the most direct ways to
reduce costs. Well-established manual techniques (popularly known
as prompt engineering) as well as emerging programmatic tech-
niques exist for optimizing prompts. Additionally, an LLM Mesh
can help optimize inference through caching. The following sections
describe these techniques.

Manual Prompt Engineering

The principle of manual prompt optimization is to craft better, often
shorter, prompts. Many guides are available online, often providing
helpful advice. An overview of prompt engineering techniques is
beyond the scope of this guide, but in general, being direct and
concise in the instructions and clearly specifying the expected out-
put will help minimize the volume of input and output tokens per
request.
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Remember, in an LLM Mesh, prompts are objects that are devel-
oped, tested, registered and reused. Thus, optimized prompts that
deliver good results at low cost can be shared and reused across
multiple applications, reducing the time needed for application
developers to test new prompts. In an LLM Mesh, a prompt must be
linked to a specific model, as not all prompts perform equally across
all models.

Prompt Compression

If LLMs are good at generating text, and a prompt is just text,
can we ask an LLM to improve a prompt? The answer is yes, and
there is much active research happening at the frontier of program-
matic prompt optimization. These methods generally use an LLM
to analyze a prompt, to understand which tokens in the prompt
are actually driving the desired result from the model, and then
compress the prompt down to these essential tokens. The result is
often a prompt that is unintelligible to a human reader but which
delivers the desired results with far fewer tokens. These approaches
are particularly useful in prompts that provide a lot of context to the
model, such as those in RAG pipelines, where a large volume of text
is sent to the model.

Two popular approaches to prompt compression are LLMLingua®,
a research project developed by Microsoft, and Selective Context®,
an open-source project developed by academic researchers. These
approaches can allow up to a 20x compression rate (i.e., reducing
input tokens by 95%) while maintaining the required performance.

Implementing prompt compression within an agentic application,
particularly one with long internal prompts — such as a RAG pipe-
line or an agent using a chain-of-thoughts reasoning technique —
can be a powerful strategy for reducing the input tokens to the LLM
service, thereby reducing costs.

By offering prompt compression as an option, an LLM Mesh
ensures that application developers don’t spend time repeatedly
implementing such techniques.

4 https://www.microsoft.com/en-us/research/project/llmlingua/

5 https://pypi.org/project/selective-context/
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Caching

As described in this chapter, some LLM services offer reduced pric-
ing for prompts where context caching can be applied. An LLM
Mesh can be configured to detect opportunities where a prompt
can be adapted to trigger context caching when using a service that
proposes this option. Usually, this means making sure that prompts
with similar content start with identical strings of text.

In addition to ensuring that context caching is triggered when pos-
sible, an LLM Mesh can provide its own caching capabilities. For
example, an LLM Mesh can detect when a prompt being sent to a
particular LLM service is identical to a prompt sent recently. Rather
than send the new prompt, it can simply supply the previously
generated response, avoiding the unnecessary regeneration of the
response and reducing both latency and cost.

LLM Modification

In the previous sections, we have looked at ways to reduce costs
without changing the LLM itself. Those techniques can thus be used
on proprietary models or with LLM services that dont allow for
model modification. A more advanced approach is to modify the
model itself so that it can provide the required results at lower cost.
The following sections review those approaches.

Model Quantization

In model quantization, the precision of the model weights is
reduced by converting them typically from 32-bit floating point
numbers to 16-bit floating point or 8-bit integers. In layperson’s
terms, the more precise values are rounded to a less precise value
with fewer significant digits. This means the calculations throughout
the model during inference are simplified, resulting in lower com-
putational time and cost. This, however, can come at the cost of
accuracy. As such, the results of a quantized model should be tested
to ensure that they meet the quality requirements.

An LLM Mesh can offer model quantization as an option for any
LLM objects. Note that this is only relevant for open-weight models
running in a self-managed LLM service.
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Model Pruning

While model quantization seeks to reduce the computational inten-
sity of inference by reducing the precision of all weights in the
model, model pruning seeks to reduce computational intensity by
reducing the number of weights the model.

Emerging techniques, such as LLM-Pruner®, developed by a team of
researchers from the National University of Singapore, show prom-
ising results, though fine-tuning may be required after pruning to
ensure the overall quality of the model.

As with model quantization, you should make sure that your LLM
Mesh offers model pruning as an option for any LLM objects. Note
that this is only relevant for open-weight models running in a self-
managed LLM service.

Fine-Tuning

A much-discussed approach to improving the cost efficiency of
an LLM is to fine-tune it to a particular context. From a cost
perspective, however, the fine-tuning process will entail its own
costs. But, it can be less costly to use a fine-tuned LLM in the long
run if, in order to get the results that you need, you find yourself
having to provide many examples to the LLM in your prompts. By
fine-tuning, the LLM can permanently “learn” to give the results
that you want, reducing the cost-per-use from that point. When
fine-tuning a model, you will typically retrain the task-specific layers
or the final layers (heads) on a specialized dataset. In the example
of marketing copy, this would be reference texts that exhibit the
desired style. If the fine-tuning is successful, the model will be able
to correctly mimic the style without requiring multiple examples in
the prompt. While there is a fixed cost to the fine-tuning process,
this may be recouped in the reduced run costs using this model for
this application.

When deploying an LLM Mesh, be sure to provide methods that
allow for fine-tuning as an option for any open-weight LLM
object. This way, the developers using your LLM Mesh can use the
approach without implementing the process themselves.

6 https://arxiv.org/abs/2305.11627
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Cost-Efficient Al Operations in the Enterprise

In the previous sections, we learned about what drives the cost
of agentic applications, how performance can be measured and bal-
anced against cost, and many different techniques that can be used
to reduce cost while maintaining the required performance.

However, running a cost-efficient Al practice requires more than
knowing about or accessing the best cost-reduction techniques. It
requires organizational policies and practices that ensure that those
techniques are fully applied. This section is about these organiza-
tional aspects.

Tracking and Reporting Costs and Performance

A major advantage of an LLM Mesh is that it allows you to track the
cost and performance of all of your agentic applications in a single
place. The centralization of this tracking is an essential part of a
well-governed Generative Al practice. Without the standardization
that an LLM Mesh provides, however, you would need to manually
aggregate this information from the many different applications
being developed across the organization, each built in a heterogene-
ous way. Doing it this way would be a major barrier to obtaining a
single view of all cost and performance data.

With regards to cost data in particular, be sure that the LLM Mesh
that you deploy track the costs in a fine-grained manner, allowing
for the costs to be aggregated across multiple dimensions, such as:

« Individual users

o Teams

» Departments

» Projects

» Functions

 Business priorities

o Usage type (experiments, development, production)
» Geography and region
o LLM provider

o LLM type

o LLM (version-specific)
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» Hosting architecture (model provider, CSP(s), self-managed)

By associating costs with all of these dimensions, you can generate
the reports required by leadership to understand where the Al
budget is being spent and to what benefit. It will also allow you
to quickly identify the root causes of any anomalies. For example,
if the costs of several different projects spike and they all use the
same model, it could be that a change in the model has resulted
in degraded performance for certain shared prompts, which would
then need to be corrected.

Reports across these dimensions can be used to support a culture of
transparency and accountability for all AI costs. Specifically, these
reports can be shared with:

o The developers of the application, to help them to understand
the ultimate cost of the applications that they are developing
and to help make them aware of the consequences of their
design choices,

o Management and budget owners, supporting a culture of trans-
parency and accountability for all AT costs.

Setting and Enforcing Budgets

Based on the tracking and reporting capabilities described in the
previous section, an LLM Mesh can also allow you to set and
enforce budgets.

From a technical perspective, setting a budget is simple: You set a
value that should not be exceeded for a given cost dimension or
combination of cost dimensions. From that number, an LLM Mesh
can allow you to enforce that budget in several ways. Here are some
examples of how that budget can be enforced in increasing order of
severity:

Warnings
The LLM Mesh can alert the budget owner that they will soon
reach or have reached their budget. This ensures that they are
aware of the issue and can take appropriate action.

Throttling
If a budget has been exceeded, the LLM Mesh can throttle
cost-incurring traftic to LLM services. This will help limit the
exceedance without entirely interrupting service. That said,
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it will degrade service and thus may not be appropriate for
production-deployed applications.

Blocking

Beyond throttling, an LLM Mesh can also be configured to
block certain LLM services if the budget has been exceeded.
This could be useful, for example, in the case of an experiment
that has gone wrong: The developer may not be aware of the
costs they are generating, and an automatic block can prevent a
costly and embarrassing overrun. On the other hand, it would
be inappropriate to block a customer-facing application.

Rebilling Policies

Organizations may pursue a policy of rebilling the cost of running
an agentic application to the business unit that benefits from its use.
An LLM Mesh can support this practice in the following ways:

Transparency
The business units that bear the cost can clearly understand
how the application works and which parts drive the cost.

Reassurance
The business units can be informed about the cost-limiting
techniques that have been applied, reassuring them that the
application has been implemented in the most cost-efficient way
possible.

Trust
The business unit can trust that the costs are captured accu-
rately.

Fairness
The business unit can be reassured that other business units are
also bearing the costs of the applications that benefit them and
that the costs are being calculated consistently.

Defining and Enforcing Cost-Saving Policies

As your organization builds more and more agentic applications
using an LLM Mesh, you should define cost-reducing policies.
These policies can take a variety of forms:
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Recommendations and best practices
As part of your training guidance for using the LLM Mesh,
you can provide recommendations and best practices for all the
cost-saving techniques that can be applied.

Periodic application reviews
Once deployed and running, the LLM Mesh enables you to
review the cost profile of the applications using the centralized
cost tracking and reporting.

Mandatory approvals
Within an LLM Mesh, you can enforce a mandatory cost review
and approval process to ensure that the best practices have been
applied before deploying an application to production.

Automated detection of cost-saving opportunities
As an LLM Mesh is aware of all applications and tracks their
costs, it can automatically detect opportunities to reduce the
costs of the applications. The LLM Mesh could then raise an
alert to trigger a review and decision about whether to apply
that technique.

Automatic application of cost-saving techniques
Certain techniques can be applied automatically in the back-
ground to all applications. For example, prompt compression
could be applied automatically for any prompts beyond a cer-
tain threshold.

Conclusion

There is no guarantee of which approach will result in the best com-
bination of cost, speed, and quality when developing and deploy-
ing agentic applications. As such, the best that any organization
can do is to test the many different approaches to optimize their
applications, to learn from this experimentation, and then seek to
generalize the best practices as policies.

An LLM Mesh supports this in several ways:

1. An LLM Mesh makes the different cost-saving techniques easily
available to all application developers. This ensures that an
individual developer does not waste time implementing these
methods themselves.
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2. An LLM Mesh provides visibility into all costs so that they
can be measured in development and monitored during deploy-
ment, facilitating reporting and budgeting.

3. An LLM Mesh allows cost-saving policies to be enforced, ensur-
ing that best practices are respected.

As such, an LLM Mesh allows cost-efficiency to become a core
strength of an AI practice. This means that an organization can
successfully develop more agentic applications in more business
domains for the same budget. This cost efficiency is essential to
maximize the value that your organization derives from generative
Al

But life is not without tradeoffs. These cost-reduction techniques
may degrade the performance of your agentic applications. In the
next chapter, we will learn about how to measure and monitor per-
formance so that you can maintain the required level while keeping
costs at a minimum.
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CHAPTER 4

Measuring and Monitoring
the Performance of Agentic
Applications

A Note for Early Release Readers

With Early Release ebooks, you get books in their earliest form—
the author’s raw and unedited content as they write—so you can
take advantage of these technologies long before the official release
of these titles.

This will be the 4th chapter of the final book.

If you have comments about how we might improve the con-
tent and/or examples in this book, or if you notice missing
material within this chapter, please reach out to the editor at
jbleiel@oreilly.com.

Now that we understand the cost models for various LLM services,
let’s look at how the performance of LLMs -- and the agentic appli-
cations built on top of them -- can be measured. Remember, the
objective of this measurement is to be able to define the required
level of performance for a given application and then find the
lowest-cost way to deliver that level of performance.

But first, what do we mean by “performance”? Indeed, there are two
very different notions here:
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1. The quality of the generated response. In other words, how well
the generated response corresponds to the requirements of the
application. This is the main focus of this chapter, as measuring
the quality of LLM responses is a novel field where an LLM
Mesh can provide significant value to an application developer.

2. The speed of the service, in terms of how quickly a response is
generated. We'll touch on this briefly at the end of this chapter
as this monitoring is similar to established DevOps practices
for monitoring the speed and responsiveness of API services.
An LLM Mesh does not need to do more than capture these
metrics.

Within the two dimensions of quality and speed, there are several
sub-dimensions as well. Figure 4-1 illustrates these dimensions and
sub-dimensions as a tree diagram.

| Latancy | | Throughgpul i

Extringic
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Ratriaval Cuality | Human Expen
L

Figure 4-1. Dimensions and sub-dimensions of measuring the perfor-
mance of agentic applications

The sections that follow will explore these dimensions in more
detail. But we'll start by describing how an LLM Mesh architecture
helps us to measure performance.
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When we talk about the performance of an agentic appli-
cation, it is important to note that we are not talking about
LLM benchmarks. LLM benchmarks are the standardized
tests to which LLM developers and others submit their
models with the goal of comparing the inherent perfor-
mance of different LLMs to one another. Some common
benchmarks include massive multitask language under-
standing (MMLU), instruction-following eval (IFEVal),
and graduate-level Google-proof Q&A (GPQA). Generally,
they submit a standard list of tasks to the model and com-
pare the results.

These benchmarks are useful for comparing one model to
another and thus can help choose which model you want
to start building with. However, they do not measure the
quality of the output of an agentic application for your
specific needs, nor do they measure the responsiveness
of your LLM service. Metrics that measure the quality of
output and responsiveness of your service are critical for
managing a fleet of agentic applications and are thus the
focus of this chapter.

How an LLM Mesh Helps Measure
Performance

When implementing an LLM Mesh, you should:

1. Provide a shared service for performance measurement and
monitoring and

2. Allow a developer to use that service flexibly at different levels
in their application.

To begin, it is important to provide performance measuring and
monitoring tools as a shared service for two reasons. The first is
efficiency: You don’t want your application developers to develop
and redevelop similar common capabilities across many different
applications. The second is consistency: You want to be able to com-
pare performance across different LLMs and agentic applications.
If every developer is implementing their own performance measure-
ment metrics in their own way, it will be difficult, if not impossible,
to gather consistent performance metrics across your growing fleet
of agentic applications.
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Then, it is important to allow your application developers the
flexibility to apply the performance measurement and monitoring
service of the LLM Mesh at different levels of their applications
throughout the many calls to an LLM that an agentic application will
make. When implementing an LLM Mesh, you should ensure that
the evaluation can be made at the level of the call to the LLM service
and not higher up in the application stack. By bundling the LLM
service call and the evaluation call, it means that developers need to
call only one API and that performance evaluation can be deployed
consistently across all agentic applications.

The concepts of performance and quality in an LLM Mesh are simi-
lar to that of data quality in a data mesh. Quality metrics for agentic
applications should be understandable and readily available because
they are a key part of the “contract” that an agentic application
has with the people using it. In the same way that a data mesh is
designed to establish and enforce such a quality contract so that end
users are sure that they can trust the data that they are using, an
LLM Mesh does the same by establishing a performance contract for
agentic applications.

As we will see, reliably assessing the quality of an agentic application
will require a combination of different techniques. An LLM Mesh
should provide these different techniques as shared services that
developers can experiment with and use freely without having to
implement them themselves for each and every application they
are developing. As with the methods for controlling cost discussed
in Chapter 3, providing pre-implemented performance monitoring
methods to all developers of agentic applications in your organiza-
tion as a shared service is a critical part of implementing an LLM
Mesh. This way, they continue their focus on their applications and
not on common components like performance monitoring.

Measuring and Monitoring the Quality of
Generated Text

There are three phases in the lifecycle of an agentic application
where the quality of the generated text should be monitored:

Pre-development
Defining the quality metrics and their required levels.
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Development
Measuring the quality of the results and iteratively improving
the application to improve the quality metric.

Deployment
Monitoring the quality metric for changes and taking necessary
measures to fix issues that arise.

In the past, if you were developing a predictive machine learn-
ing (ML) model, proceeding through these steps would be rather
straightforward. You would choose a metric depending on the busi-
ness requirements of the application (e.g., in certain applications,
you may be more sensitive to false positives than false negatives or
vice versa) and set a minimum threshold for that given metric. You
would then train the model to deliver the required performance.
Finally, you would deploy the model and set up a monitoring capa-
bility to ensure that it continues to deliver the required level of
performance in the face of real-world data. These processes are now
well-established with standard best practices to follow.

Measuring the quality of agentic applications is very different for
two reasons:

1. Model outputs are non-deterministic. With a traditional ML
model, the same inputs always give the same outputs. In this
sense, it is deterministic. With an LLM, the same input — the
prompt — will generate different outputs.

2. The models are used in open-ended contexts. In a given applica-
tion, the same model might be called on to select a tool, gener-
ate code, evaluate a response, and generate a text response for
the user, requiring different quality metrics and requirements
for each interaction.

Both of these characteristics are features and not bugs of LLMs.
The fact that they are non-deterministic means that they can mimic
creativity and come up with novel responses. The fact that they can
be used in open-ended contexts means that they can be flexibly
used to solve many different problems. These are their strengths,
but it means that measuring their quality is much more difficult
than measuring the quality of predictive models, where statistical
methods alone can be used to prove whether a model is performing
well or not.
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Evaluating the quality of LLM outputs is done in two ways:

1. Measuring how well the model is performing independent of
any particular task — known as intrinsic quality — and

2. Measuring how well the model is satisfying the task at hand —
known as extrinsic quality.

Both approaches are useful in measuring and monitoring the quality
of LLM outputs. Measures of intrinsic quality are useful to identify
problems in model performance early on in a relatively low-cost
way. At the same time, measures of extrinsic quality are necessary
to ensure that the output of the model is actually solving the task
at hand in a way that a human expert would judge as appropriate.
When implementing an LLM Mesh, both intrinsic and extrinsic
evaluation techniques are required.

Intrinsic Quality Evaluation

Intrinsic quality measures assess how well the LLM is performing,
independent of the task at hand. These are different from the LLM
benchmarks mentioned in the note box at the beginning of the
chapter. Those benchmarks are actually extrinsic measures of how
well an LLM performs at a standardized task. Instead, the intrinsic
measures look at several factors of the inherent performance of the
model. Those include:

1. Perplexity, or how confident the model is in predicting each
token.

2. Consistency, or how similar model outputs are when provided
with the same input.

3. Retrieval quality, or how effectively an underlying retrieval sys-
tem is finding relevant documents.

Let’s now look at each of these three factors.

Perplexity

Perplexity measures how “surprised” a model is by the text it gen-
erates or encounters. Lower perplexity generally means the model
finds the text more predictable, indicating confidence. Note that low
perplexity (i.e., high confidence) does not guarantee that the output
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is accurate; it only calculates that the token that it has just generated
is very likely the best one. That said, the model may be confidently
wrong.

While perplexity does not tell us if the response of the LLM service
is accurate or not, high perplexity can be an indication that some-
thing has gone wrong and the model is entering unfamiliar territory.
In the context of an agentic application, this might mean that a
prompt is too imprecisely written and that the model has to take a
wild guess at what the correct response might be.

For example, if high perplexity is measured at a step where the agent
chooses from a list of available tools, it indicates that the model
is not sure of its choice and may have chosen a different tool in
another, similar case. By monitoring perplexity, you can detect this
situation and take steps to fix the problem. For example, you could
improve the prompt by providing more detail to the model about
the task at hand or you could the schemas of the tools so that the
model better knows which one to choose.

Another important aspect of measuring perplexity is that it can
provide input to the model itself about the best next step to take.
For example, by feeding an indication of perplexity back to the
model, the agent can choose to escalate the task for human review
or stop an automatic process. These are important performance
and safety measures that are only possible if perplexity is measured
consistently.

Consistency

Even if a model is fully confident in its response as measured by
low perplexity, an enterprise application requires consistent perfor-
mance. It is, therefore, important to measure the model’s consis-
tency. This is done by setting up a process where the model is
provided with the same input and the similarity of the output
is measured using traditional Natural Language Processing (NLP)
techniques (most often cosine similarity).

By continually monitoring the consistency of a model within an
LLM Mesh, you can detect early on any problems that may affect the
quality of any applications that are built on top of the model.
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Retrieval Quality

Many agentic applications will include a retrieval system, as
described in Chapter 2. These systems identify relevant passages
from a corpus of texts and return them to be included in the
response from an LLM service. Consistently evaluating the quality
of retrieval is essential for ensuring that the systems deliver useful,
accurate content.

A system designed to measure retrieval quality should evaluate
both the relevance of retrieved documents and their effectiveness
in supporting the system’s overall goals, such as providing accurate
answers. It should track how often the most useful information
appears at the top of search results and identify gaps where rele-
vant content is missed. To achieve this, the system should combine
automated metrics with human feedback. Additionally, it should
support continuous improvement by highlighting patterns in errors,
enabling adjustments to search algorithms, ranking methods, and
data quality to enhance retrieval accuracy over time.

By measuring and monitoring retrieval quality, developers of agentic
applications can ensure that their systems consistently deliver accu-
rate, relevant information, leading to more reliable and effective user
interactions. This process helps identify weaknesses in how infor-
mation is retrieved and ranked, allowing for targeted improvements
in search algorithms and data management. Ultimately, measuring
retrieval quality results in smarter, more responsive applications that
can better understand and meet user needs.

Extrinsic Quality Evaluation

What does it mean for the output of an agentic application to be
good for a particular purpose? Given the broad range of potential
contexts, the best we can say is that a good output is one that serves
its intended purpose well. This means that, in order to measure
the quality of the output, you will necessarily need to define what
good looks like on a per-application basis. This definition should be
made with the input of a human expert, which can then be encoded
in a “golden dataset” that can serve as the ground truth for future
automated evaluation processes.

Take, for example, a very simple application that categorizes cus-
tomer service requests according to a company’s specific product
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category. For the application to work properly, the request must
return only the name of the category, not an entire sentence. In such
an application, what constitutes a good answer is two-fold:

The accuracy of the response.
Did the LLM correctly classify the request according to the
organization’s categories? This would likely require a golden
dataset to test against where, for example, customer service
requests are categorized correctly, given that the knowledge is
specific to the organization and may be difficult for an LLM to
determine without this additional guidance.

The format of the response.
Did the LLM respond with only the category title, as instructed?
This can be evaluated simply with a small glossary and a pre-
defined rule.

Now, imagine a more complex agentic application where the agent
must choose the appropriate tool for a task from among a list pro-
vided to it and then interact with that tool correctly based on the
information in the schema before returning a properly formatted
response to the user. This will require several tests that are specific
to each step: selecting the correct tool, using the tool correctly, and
providing a properly formatted response to the user.

Once you have defined what a desirable outcome is for each sub-
task of your agentic application, you then must define a metric for
that measurement and a method to generate that metric. There are
many methods available, and when implementing an LLM Mesh,
it is important to ensure that you make a wide range of methods
available to your application developers so that they can choose
the right combination of methods and metrics for each application.
In this way, the LLM Mesh will save developers time by ensuring
that they don’t have to waste time on implementing methods for
quantifying the quality of their applications, and ensure that the
organization can be confident in the results.

There are three main categories of methods for measuring the qual-
ity of the output of LLMs, each with its own advantages and disad-
vantages. Those categories are human expert methods, statistical
methods that compare responses to ground-truth, and LLM-based
evaluation methods. The following sections review those categories.
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Human Expert Methods

The most reliable — but least scalable — method for measuring the
quality of the output of an LLM is simply asking a knowledgeable
person if the response is good or not. This approach is frequently
used during the development phase of a new agentic application. For
example, in a data analytics-generating application, a data analyst
could provide input on how they would solve a given problem, and
the LLM could be prompted to deliver similar results.

However, once an application is deployed, the volume of content
generated would make it infeasible to use human evaluation to
monitor the quality — you are not going to pay a human to review
every output of the LLM. That said, there are two ways that human
feedback can be used to monitor quality once the application is
deployed:

1. Include a method for simple user sentiment tracking using a
binary feedback button (e.g., thumbs up, thumbs down). Given
the low effort required of the user, it is possible to collect a
meaningful sample of responses, though they may lack detailed
contextual feedback on why the user responded the way they
did.

2. Have a human expert analyze a sample of results. Such checks
are an important part of quality monitoring, and they should be
designed to ensure that the expert user reviews a representative
sample of all responses.

When using human evaluation, it is important to ask the human
evaluator to rate the output in a consistent manner across several
dimensions. Simply asking if the response is “good” will not get you
the information that you need to improve the application. Depend-
ing on the context of the application, you may consider asking
the experts to evaluate the responses across some of the following
dimensions:

Relevance
Does the output align well with the query and user intent? How
well does it address the core needs of the business use case?
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Accuracy
Are the facts and information presented correct and free of
errors? This is especially crucial for applications in fields requir-
ing high precision, like finance or healthcare.

Clarity and Coherence
Is the output easy to understand, logical, and well-structured? A
high-quality response should be clear and devoid of ambiguous
or confusing language.

Completeness
Does the output provide a sufficiently complete answer, or are
key details missing? Depending on the use case, an answer that
is too brief or superficial may not be helpful.

Conciseness
Is the response free of unnecessary information or verbose
explanations? It’s often important for enterprise applications
to deliver only what’s needed, especially when users may need
quick answers.

Actionability
For applications with practical implications, can the user easily
take action based on the output? This is relevant in customer
service, recommendation systems, or task-based LLM applica-
tions.

Tone and Style
Does the tone fit the enterprise’s needs? For instance, customer-
facing applications may need a friendly tone, while internal
documentation tools might require a formal, straightforward
approach.

Bias and Fairness
Is the response free from harmful or biased statements? Evalu-
ating for fairness ensures inclusivity and adherence to ethical
standards.

Safety and Compliance
Does the output avoid unsafe suggestions or violations of regu-
latory standards? This is essential in sensitive domains like legal,
financial, or medical applications.
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Adaptability and Contextual Awareness
Can the LLM handle context changes or follow-up questions
accurately? This dimension matters in dynamic environments
where information evolves or multi-step tasks are involved.

Novelty and Creativity (if applicable)
Does the LLM offer innovative solutions or ideas? This can be
particularly valuable in domains like marketing or R&D, where
unique insights are beneficial.

When implementing an LLM Mesh, make sure that it can capture
the results of human expert evaluations in a structured way. These
evaluations are extremely valuable as they can form the basis of
more automated evaluation approaches that we'll describe later,
some of which require a golden dataset with accurate responses to
compare against.

Ground Truth-Based Statistical Methods

For certain use cases, you will have documented examples of correct
outputs that you can use as your ground truth. In these cases, you
can set up quality measures that compare the model output to that
ground truth. The following three statistical methods are frequently
used:

Translation: Bilingual Evaluation Understudy (BLEU)
Measures the overlap of n-grams between the generated output
and a reference text. Its commonly used to evaluate the quality
of machine translation.

Summarization: Recall-Oriented Understudy for Gisting Evaluation
(ROUGE)
Primarily used for summarization, ROUGE compares the recall
of n-grams, specifically how much of the reference summary is
captured by the generated output.

BERTScore

As an alternative to relying on n-grams, BERTScore uses the
BERT pre-trained transformer model to compute the similar-
ity between the generated text and reference text on a token
level. This method captures semantic similarities rather than
just n-grams. It is useful in evaluating the responses in chatbot
applications, as well as for evaluating the quality of translations
and summarizations.
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These statistical methods will generate metrics that are familiar
to individuals who have developed ML models previously, namely
accuracy, F1 score, precision, and recall.

Your LLM Mesh should make these methods available to your devel-
opers, as they can provide a useful point of reference for evaluating
the quality of LLM outputs. That said, these methods are appro-
priate only for specific cases and cannot evaluate more complex
responses. They also have the benefit of requiring relatively few
computational resources to compute, in contrast to the LLM-based
methods described in the next section.

LLM-Based Evaluation Methods

When performing extrinsic evaluations of agentic applications,
moving beyond the limitations of traditional statistical methods and
human expert methods requires turning to a method that can inter-
pret and analyze the applications’ varied and open-ended outputs:
evaluation methods that use LLMs themselves. Though potentially
counterintuitive, LLMs can be used to evaluate the quality of their
own output when they are carefully instructed on how to do so,
similar to how a human instructor grades the tests of their human
students.

It should be noted that this method — often referred to as LLM-
as-a-judge — is an area of active research and experimentation.
The techniques described in this section are liable to evolve or be
superseded by improved methods in the near future.

Given that LLM-as-a-judge methods rely on LLMs, they essentially
become agentic applications themselves.

The core notion of LLM-as-a-judge methods is that you develop a
prompt or series of prompts that will instruct an LLM to evaluate
a specific response aspect. A response aspect is simply a formal
definition of the different qualities that you may be looking for in a
response. Table 4-1 summarizes these aspects.

Table 4-1. Overview of the different response aspects that you may wish to
evaluate, adapted from “GPTScore: Evaluate as You Desire™

Definition

Semantic Coverage Text summarization How many semantic content units from the
reference text are covered by the generated
text?
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Aspect Task Definition
Factuality Text summarization Does the generated text preserve the factual
statements of the source text?

Consistency Text summarization, Is the generated text consistent in the
Dialogue response information it provides?
generation

Informativeness Text summarization, Data | How well does the generated text capture
to text, Dialogue response | the key ideas of its source text?
generation

Coherence Text summarization, How much does the generated text make
Dialogue response sense?
generation

Relevance Dialogue response How well is the generated text relevant to
generation, Text its source text?
summarization, Data to
text

Fluency Dialogue response Is the generated text well-written and
generation, Text grammatical?
summarization, Data to
text, Machine translation

Accuracy Machine translation Are there inaccuracies, missing, or unfactual

content in the generated text?

Interest Dialogue response Is the generated text interesting?
generation

Engagement Dialogue response Is the generated text engaging?
generation

Specific Dialogue response Is the generated text generic or specific to
generation the source text?

Correctness Dialogue response Is the generated text correct or was there a
generation misunderstanding of the source text?

Semantically Dialogue response Is the generated text semantically

appropriate generation appropriate?

Understandability Dialogue response Is the generated text understandable?
generation

Error Recovery Dialogue response Is the system able to recover from errors?
generation

Diversity Dialogue response Is there diversity in the system responses?
generation

Depth Dialogue response Does the system discuss topics in depth?
generation

Likeability Dialogue response Does the system display a likable
generation personality?

Flexibility Dialogue response Is the system flexible and adaptable to the
generation user and their interests?
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Definition

Inquisitiveness Dialogue response Is the system inquisitive throughout the
generation conversation?

2 Fu, Jinlan, et al. “Gptscore: Evaluate as you desire.” arXiv preprint arXiv:2302.04166 (2023).

When setting up an LLM-as-a-judge system, you will have to make
many decisions, including:

o Which LLM should be used as the judge? Within an LLM Mesh,
this can be any of the LLM services made available to the devel-
opers. Certain LLM-as-a-judge methods seek to provide good
results with smaller models, reducing the cost of the evaluation.

+ Can the evaluation be completed with a single interaction with
the LLM (called a single-turn method), or will it require multi-
ple interactions (called a multi-turn method)?

o Does the evaluation method require reference answers or not?
If the method requires reference answers, you need to develop
or otherwise provide the golden dataset that the LLM judge will
refer to.

o+ Do the evaluations of the LLM judge correlate with the respon-
ses of a human expert judge? This is the key question! The LLM
judge does not know if the answer is good or not; only a human
expert can confirm this. When setting up an LLM-as-a-judge
method, the goal is to ensure that its responses correlate with
the responses of a human expert, meaning that if a human
expert would rate one aspect of a response positively, then the
LLM judge would rate it in a similar manner.

Note that as LLM-as-a-judge systems are based on LLMs which are,
by definition, non-deterministic, the same judge may not always
give the same evaluation to the same response. That said, the same
can be said about human expert judges. Your goal when implement-
ing an LLM-as-a-judge method is to design the prompts in such a
way that the LLM gives consistent and reliable evaluations of the
responses. Multiple libraries and templates of such evaluations have
been developed and are available from both proprietary and open
source providers. Examples include OpenAl Evals, Arize Phoenix,
and RAGAS.
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Implementing Evaluation Methods

When implementing an LLM Mesh in your organization, you would
decide which methods to make available to your developers and
provide them as a shared service. The statistical and LLM-based
methods described in the previous sections are all available as open
source implementations from their original authors that you could
freely use in your LLM Mesh.

Alternatively, rather than creating your own implementations of
these open source methods, you could choose to use a third-party
service, connecting it to your LLM Mesh. Like with LLM services,
an LLM Mesh architecture should allow for connecting to both
self-hosted and third-party hosted evaluation services. Third-party
evaluation services include those that are offered by the cloud ser-
vice providers (Amazon’s SageMaker Clarify, Google’s Vertex Gen
Al Evaluation Service, and Microsofts Azure Machine Learning
Prompt flow which includes templated evaluation flows), as well
as those offered by a host of emerging startups (for example, Lyzr,
Humanloop, Cognition Labs, among others and with more emerg-
ing every month).

So, should you build your own implementations of open-source
evaluation methods or purchase third-party evaluation services? On
the one hand, building your own implementations of these methods
within your LLM Mesh can be a good choice, as it allows you to
make fine-grained decisions about how the evaluation service func-
tions, including which LLM service they use and ensuring that they
are compatible with your LLM Mesh. On the other hand, buying
third-party evaluation services avoids this development effort but
at the cost of customization. Just as your organization will likely
choose to buy some agentic applications and build others, you face
the same “build or buy” choice when it comes to evaluation services.

From the perspective of an LLM Mesh, it is important to treat these
evaluation methods in a consistent manner, regardless of whether
they are provided by a third party or if you implement them your-
self within your LLM Mesh. When implementing your LLM Mesh,
ensure that it allows you to define and capture the following dimen-
sions of an evaluation:

o Response being evaluated, associating it with the relevant appli-
cation and agent capturing the version of each. This ensures
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that you have traceability of your evaluations and how they
evolve with different experiments.

o Evaluation method and service being used, including any infor-
mation about the version of the service being used. For exam-
ple, a small change to the evaluation service may result in very
different evaluation results in some cases, so taking into account
the version of the evaluation service is essential.

o Aspect of the response being evaluated.

o Metric being calculated, including a precise definition and the
formula for its calculation.

o Value of the metric evaluated, so that you can track the evolu-
tion of the metric over time as you continue your experimenta-
tion or monitor the application while it’s in production.

Note that all third-party evaluation services may not expose this
information in their API, meaning that you will not be able to
capture it in your LLM Mesh, making it difficult to get a complete
picture of performance across your portfolio of agentic applications.
You should take this into account when choosing among different
third-party services. Given the value of having consistent and com-
parable performance metrics that are centrally aggregated in an
LLM Mesh, you may find that you will need to implement your own
services in many cases.

Let’s make this all more concrete by looking at a simple example
of how performance measurement would work for someone devel-
oping an agentic application within an LLM Mesh architecture. In
this example, let’s imagine that the developer is working on an agent
that includes a RAG-enriched response at one point. They want to
evaluate and monitor if that response is only making claims that are
backed up by the documentation that it is using for its retrieval.

First, the developer would capture the generated response and log
its content plus information about its associated LLM Mesh objects
(the application it is serving, the LLM service that it is using, etc.).
Then, the developer may choose to use RAGAS as their evaluation
method as it is designed to work well with RAG applications. The
aspect that they want to measure is whether the response provides
appropriate context, and the specific metric is called context recall.
Context recall is calculated by simply dividing the number of claims
in the generated text that can be attributed to the source text by the
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total number of claims made in the generated text.! If this value is 1,
it means that all of the claims in the response are based on claims in
the source, while a value of 0 would mean that none are. This value
would be logged then as the result of the evaluation.

Then, a second LLM-based evaluator might evaluate the quality of
the written response, checking to ensure that it meets the expected
tone. That evaluation would also need to capture the generated
response, method, aspect, metric, and value for the tone of the
response.

In this scenario, the two LLM-based evaluators measured different
parts of the response at different moments in the agent’s logic chain.
Given the very different natures of these tests, it is necessary to
use different evaluations. There could be several more evaluations
required for such an agent, depending on its complexity. This multi-
plicity of evaluations shows the importance of providing evaluations
as a shared service so that the developers can focus on creating and
perfecting the logic of the agent and not be slowed down by the
important but repetitive work of setting up robust evaluations.

Implementing a Performance Architecture in
an LLM Mesh

As described in the previous sections, when implementing an LLM
Mesh you will make different quality assessment methods available
to your app developers. They will, in turn, apply these methods at
different levels within an agentic application, generating metrics that
they can then monitor over time. But what are the best practices
for how these different methods and metrics can be combined to
ensure that the applications are performing as intended? While the
state-of-the-art is a rapidly moving target, let’s describe a simple
performance architecture that could be implemented as an organ-
izational best practice for all agentic applications using an LLM
Mesh.

1 “Context Recall” Ragas Documentation, October 14, 2024, https://docs.ragas.io/en/sta-
ble/concepts/metrics/available_metrics/context_recall/. Accessed 5 Nov. 2024.
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LLM-Level Monitoring

At the most basic level, your organization should put in place
systems to consistently monitor the performance of your primary
LLMs to ensure that they are delivering consistent performance.
Changes in performance may occur when either the model is upda-
ted to a newer version or when the nature of the input changes, even
slightly.

In the first case, model updates may result in unexpected and poten-
tially degraded performance, especially if your team members are
crafting highly specialized prompts. These prompts may depend on
quirks of a particular model version which may disappear when a
model is updated. While it is true that newer versions of models
generally offer improved performance, often at lower cost, it is
important to be able to monitor performance so as not to be caught
unaware of changed performance in a production application.

In the second case, even when a model stays the same, it is possible
that your input to the prompt may change over time without you
realizing it. For example, if you are using an agentic application to
process customer service requests, the content of those requests may
shift as your organization introduces new products and services.
This may result in changed performance of your application, requir-
ing you to take some action to return the application to its desired
level of performance.

In both of these cases, you need to design experiments where you
compare the real-world results that your applications are generating
with the expected, reference results. This can be done using the
LLM-as-a-judge methods described above, using reference answers
as your point of comparison. Note that, If your monitoring shows
that the nature of your input to the LLM has changed, it may mean
that you need to update your human-approved reference answers.

Agent-Level Monitoring

The output of an agent may vary depending on many different
factors: changes in underlying LLMs, changes in the user inputs,
changes in connected retrieval services, changes in tools, etc. Just
as the power of agents is their open-endedness and the diversity of
systems that they can integrate, so too is this diversity a source of
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difficulty when trying to monitor agents’ performance and diagnose
any issue.

At the heart of agent-level monitoring is measuring if each step
in an agent’s execution is driving the ultimate task it is meant to
accomplish.? Is the retriever choosing the right documents for that
task? Is the agent choosing the right tool for that task? Is the final
output written in a tone that is appropriate for that task?

Whether you should measure the quality of every task completion
or just a sample depends on several factors:

1. The criticality or riskiness of the application. Some applications
are critical to core business processes and others are high risk
(and some are both!). In these cases, you may choose to moni-
tor all completions, rather than a sample.

2. The variability of the performance. If the agent shows that it
can complete the task in a consistent way, then you may content
yourself to measure the performance of only a sample.

3. The volume of task completion and cost of the monitoring. As
described above, certain evaluation methods can be costly in
and of themselves. Some agents may be completing many thou-
sands of tasks per day. You will need to use the cost-measuring
techniques in Chapter 3 to fully understand and capture the
costs of these processes to ensure that you have the budget for
them.

Agent Self-Monitoring

You will recall that in the previous sections of this chapter, we
described LLM-as-a-judge methods of quality assessment as being
essentially agentic applications themselves. You also recall in Chap-
ter 2 that we said that agents could call other agents as tools. So,
agents can also use quality assessment agents to monitor their own
outputs. This can and should be a core part of how agents iteratively
improve their responses, using assessment methods provided to
them to check their responses and to attempt to improve their own
performance.

2 We see again here yet another reason why it is important to design agents with a
relatively narrow scope of action. When the scope is broader, it is more difficult to
specify what good task completion looks like.
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This iterative self-improvement should be fully logged so that
human experts can then review how the agents are improving and
to identify common areas for improvement. For example, if the
developers find that an agent often calls the wrong tool for a par-
ticular task and must go through a quality-improvement loop to
identify and then correct the error, then the developers can improve
their agent design to better direct the agent in the right direction
from the start, for example by improving the schema of the tool or
the prompt instructing the agent what to do. As always, reference
answers and human expert monitoring remain essential to ensure
high quality and adherence to ethical and regulatory requirements.

What are the alternatives to an LLM Mesh?

When evaluating LLM applications, organizations can choose
between fully distributed evaluation, centralized monitoring, or an
LLM Mesh. A fully distributed approach allows teams to build
custom evaluation systems tailored to each agent or application,
making it easy to implement and scale alongside development.
However, this method lacks enterprise-wide quality standards,
making it difficult to enforce consistency and implement standard-
ized diagnostic procedures. Additionally, evaluation results often
remain siloed, limiting the ability to drive adaptive behaviors across
the organization.

Centralized monitoring, on the other hand, provides a common
evaluation framework by capturing logs and overseeing perfor-
mance from a single application. While this aligns with traditional
enterprise monitoring paradigms and ensures standardization, it
tends to focus on monolithic applications rather than reusable
components, limiting flexibility. In contrast, an LLM Mesh offers
evaluation as a shared service, enabling applications, agents, and
multi-agent systems to dynamically leverage a standardized yet
adaptable evaluation framework. Although it may require an initial
shift in enterprise architecture, an LLM Mesh ultimately promotes
efficiency, reusability, and scalability, making it a strong choice for
optimizing LLM evaluation.
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Measuring and Monitoring the Speed of
Agentic Applications

Like any other service, it is important to monitor the speed and
responsiveness of the agentic applications that you will build. As
discussed in Chapter 2, an agentic application involves many API
calls to LLM services and other objects within the LLM Mesh. The
speed and responsiveness of the agentic application will depend
on the collective speed and responsiveness of these various serv-
ices. Thankfully, monitoring the speed of API services is a well-
established DevOps practice, and those methods apply equally well
here. Thus, this guide will not develop those concepts fully, but
rather only mention a few aspects that are specific to agentic appli-
cations.

The speed and responsiveness of agentic applications are meas-
ured using specific metrics. Two important metrics to consider are
latency and throughput. Latency measures how long it takes for an
LLM service to respond to an input. Throughput measures how
many requests it can process or how much output it can produce in
a given time span.

Inference latency is usually measured in time to first token (TTFT)
and time per output token (TPOT). Together with the number of
output tokens, these metrics can be used to calculate a global metric,
total generation time, which measures how long it takes to provide
a response from the moment the input is received until the response
generation ends.

Inference throughput is measured primarily with tokens per second.
This metric most often takes into account only output tokens and an
LLM Mesh should specify whether this is the case or not.

An LLM Mesh should provide observability of these performance
metrics to ensure that they are meeting the requirements of an
application. These requirements should be documented in the LLM
Mesh on a per-application basis as well. For example, an internal
chatbot supporting customer support agents as they work in real-
time with customers will have different and higher performance
requirements than an application that runs silently in the back-
ground analyzing contracts with suppliers.
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Capturing and Optimizing the Costs of Performance
Evaluation

As you have probably already realized, some of the LLM-based eval-
uation methods® can result in a lot of traffic to your LLM services
and thus will generate costs. It is important to capture and optimize
these costs as you would for any agentic application, as described in
Chapter 3.

It is important to be intelligent about the frequency with which you
run these evaluations so that you can balance the cost of the evalua-
tion itself against any expected improvement. Furthermore, you will
need to decide on a sampling strategy for monitoring the responses
of production-deployed applications. The volume of their responses
is likely to be too great to justify monitoring every response, though
this needs to be balanced against the sensitivity of the application.

If you have a very sensitive application that requires the evaluation
of every response using a computationally expensive evaluation
method, you may find that the combination of requirements makes
the application economically unviable, even if it is technically possi-
ble to build. In such a situation, an LLM Mesh can help by allowing
you to test different evaluation methods to see if there is one that
is sufficiently cost-efficient while maintaining the required perfor-
mance.

Conclusion

In this and the previous chapters, we have understood how we can
quantify and reduce costs, as well as how to measure performance
in terms of both the quality of the response and the overall speed of
the service. By measuring these three dimensions, your developers
will be able to experiment with different approaches to find the right
combination of speed, quality, and cost. Once again, there is no sil-
ver bullet and no single best practice. But an LLM Mesh can make it
far more efficient for teams to test and build high-performing, cost-
optimized applications by ensuring that they focus on the develop-
ment of the application itself and not the supporting evaluation and
monitoring services since those are provided by the LLM Mesh.

3 The statistical methods are far less computationally intensive, their costs are essentially
negligible.
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In the following two chapters, we will discuss additional shared
services that you should also include when implementing an LLM
Mesh. These are services to ensure the safety and appropriateness of
the content generated by your agentic applications. You’ll see how an
LLM Mesh can help by providing the necessary mechanisms to pass
those tests with flying colors.
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