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MAXWELL-BOLTZMANN DISTRIBUTION OF GAS PARTICLE VELOCITIES
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THIS FALLING BUSINESS

One of the best positions for freefall is the hard arch, arms flung back, head back, and legs 

relaxed. Like a badminton birdie, the hard arch stabilizes your fall and prevents tumbling and 

spinning. 

Parachutes come in handy for freefall, especially when multiple jumps are planned. An 

altimeter is worn to track downward progress. For the math of this falling business, we 

define a few terms…

Cal Lesser by Barry Maple, learnskydiving.co.uk
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TERMS OF FALLING:

t    (sec)

z 
(kft)
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POSITION, VELOCITY, ACCELERATION
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THIS FALLING BUSINESS

One of the great accomplishments of calculus has been as a predictive tool to explain the 

behavior of  falling objects. We know that the acceleration due to gravity, g, it is 32.2 feet per 

second squared at sea level, or 9.81 meters per second in metric units. If we take downward 

acceleration as positive we have:

We can ask the question,  “What function, when differentiated gives the constant g”? Asking 

this is equivalent to asking . “What is the inverse operation of taking the derivative?”  or  

“What is the antiderivative?”. We will answer in copius detail later. For now we assume a 

search is required.  In the end, it will turn out we have to do a search anyway and a good 

starting strategy becomes a good end game too. If we differentiate: 

we obtain an expression for the velocity as a function of time, which happens to be linear.

g
dt

dv
'va 

tg
dt

dz
v 
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THIS FALLING BUSINESS - CONTINUED

As in other sports, we use the principle that, “If a play works, call it again.”

This time we ask, “What function, when differentiated gives us the equation above?”  After 

some trial and error searching we discover: 

We now have an expression for the position of an object as a function of time – in the 

absense of air resistance or drag.  This is quite useful. It sets a upper bound on the distance 

an object can fall after t seconds. No object in freefall can fall further on Earth, in a given 

time, than this.  The constant   z0 specifies the release altitude of  the falling object. 

Exercises:    (1) Differentiate the equations starting with z = f(t).

(2) Verify they produce the velocity and acceleration respectively.

2
0 tg

2

1
zz 

tg
dt

dz
v 
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Time (s)
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Time (s)

Jump Altitude (kft)

Freefall Time No 
Air Resistance (s)

Move Dot to Find True Freefall Time

Lecture14-ThisFallingBusiness.gx 
THIS FALLING BUSINESS: 

EXERCISES:
1) Move Black Dot to Change Jump Altitude
2) Record Freefall Time with No Air Resistance.
3) Find True Freefall Time with Air Resistance.
4) Find Jump Altitude for 30 seconds in Vacuum.
5) Find Jump Altitude for 30 seconds in Air.
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THIS FALLING BUSINESS – A REAL DRAG

Unfortunately air resistance plays havoc with the simplicity of our first approach. The  

following development is included for those who want to see the next step. It starts with 

Newton’s second law which requires us to sum forces on the body:

The subscript of z says that we are summing falling forces vertically.

Rather than just finding the antiderivative twice, we sum the forces acting on the falling 

object to find that mass times acceleration equals the aerodynamic drag minus the weight.

We work in a consistent system of units to insure correctness.

amFz 

     gmACv
2

1
WeightDragam d

2 






 

Weight

Drag

areafrontalA

tcoefficiendragC

densityair

d






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THIS FALLING BUSINESS – ORDINARY DIFFERENTIAL EQUATIONS

The equation we just wrote can be simplified by lumping all the constants together to yield:                   

An equation that expresses the derivative of a quantity in terms of that same quantity is 

called a differential equation. We won’t solve this here, but using wxMaxima™  we discover 

that:

and like Archimedes we run down the street in our jumpsuit declaring, “Voila!  What was 

difficult before has now become possible!”  You can run this file for yourself.  Its name  is:

Lecture14-ThisFallingBusiness.wxm. Scale factors and  constants  are are in a spreadsheet 

called Lecture14-ThisFalling Business.xls. This ends the “extra credit” development.

gvk
dt

dv

dt

dz

dt

d 2 








k

)2ln(
t

k

g

k

)1eln(
zz

tgk2

0 




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11

11

0

1

2

-1

-2

Consider a number line and the seemingly innocent assumptions therein:

1) Values increase from left to right.

2) A zero point exists.

3) There are positive and negative numbers. 

4) These numbers are uniformly spaced.

A DIGRESSION
Lecture14-ADigression0.gx 

Exercises

1) Construct number lines that violate

each assumption above.

2) Discuss the implications of doing this.
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a

b

c

Now consider two numbers a and b on this line, and a third related one, c:

1) The distance between a and b is always  b – a.

2) When c = (a+b)/2, it always exactly halfway between a and b.

3) This remains true whether  a and b are positive, negative or both.

4) Drag each of the three  points and convince yourself of this.

5) Click ViewShow All to see how this remains true in two dimesions.

SOME EMERGENT TRUTHS
Lecture14-ADigression1.gx 
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Lecture14-ADigression2.gx 

The half-sums and half-differences of a and b are significant:

MORE EMERGENT TRUTHS
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2
,0

(-a+b,0)
a b

the midpointhalf the distance

the distance

O
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Lecture14-ADigression3.gx 

A number anywhere between a and b can be interpolated using a parameter.

If the parameter is based on the distance between a and b we call it:

An Arc Length Parameterization

PARAMETERIZATION AND INTERPOLATION

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0-0.5

0.5

1.0

1.5

-0.5

-1.0
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0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0-0.5

0.5

1.0

1.5

-0.5

-1.0

-1.5

(a,0) (b,0)

-a+c

-a+b
,0-a+

-a+c

-a+b
,0

(-a+b,0)

z1

z2

z
0

a b

the interpolantthe parameter

the distance

O

© 2009  L. Van Warren  / wdv.com / All 

Rights Reserved
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0.5 1.0 1.5 2.0 2.5 3.0 3.5-0.5-1.0

0.5

1.0

1.5

-0.5

-1.0

x
0
,y

0

x
1
,y

1

Pa

Pb

s

Pc

Lecture14-ADigression4.gx 

This idea can be extended to 2, 3 or any number of dimensions.

Drag the parameter s to experience this for yourself.

PARAMETERIZATION AND INTERPOLATION
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0.5 1.0 1.5 2.0-0.5-1.0
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a b

a,f(a)

b,f(b)

B

c

c,f(c)

f(c)

O
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f(b)

 
t

Þ ~0.5

Lecture14-ADigression5.gx 

Consider the table interpolation problem.
You are given values for two points:

(a, f(a)) and (b, f(b))
along with  a value of c.

You are asked to find f(c)
assuming the function is

linear between the two points.

EXERCISE:
Write an expression for f(c) in terms of

(a, f(a)) and (b, f(b)) and c.

LINEAR INTERPOLATION
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Lecture14-ADigression6.gx 

EXERCISES: 
1) Drag the blue dots.
2) Click ViewShow All
3) Choose three points, a, b and c.

Write an expression for f(c)
in terms of (a, f(a)) and (b, f(b)) and c
that does not use the function,
but rather its rate of change.

NONLINEAR INTERPOLATION
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Number
of

Particles
at a

Given
Velocity

Particle Velocity    [meters/sec]
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Lecture14-TheMaxwellBoltzmannDist.gx MAXWELL-BOLTZMANN DISTRIBUTION

OF GAS PARTICLE VELOCITIES EXERCISES: 
1) Drag the dots.
2) Record what happens.
3) Change the temperature.
4) Click View  Show All
5) Approximate this curve using

the Normal Distribution.
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REACTION RATES IN CHEMISTRY
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ZERO, FIRST AND SECOND ORDER REACTIONS

A chemical reaction can be written in a polynomial-like form as:

aA + bB  cC 

For example:            

2H2 + O2 = 2H2O

Chemical reactions fall into three categories, classified by the rate at which they occur.

1) Zero-Order Reactions: reaction rate does not depend on reactant concentration.

2) First-Order Reactions, reaction rate depends on one reactant’s concentration.

3) Second-Order Reactions, rate depends on product of reactants concentrations.

For an excellent discussion of the measurement of reaction rates visit David N. Blauch’s

Chemical Kinetics Site at Davidson.
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Square braces [ ] are used for two different ideas:

1) Interval Arithmetic:   x = [0, 4] means 0 <= x <= 4, 

2) Chemical Concentration: [A] = How many particles of chemical A
in a volume. The units are expressed as: moles/liter of total volume.

• When the same operator has two different meanings, we say the operator 
“overloaded”. We distinguish the meaning by the context.

OPERATOR OVERLOADING

[!]
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PRECIOUS METALS, AMMONIA AND THE INVERSE PROCESS

Some metals that are very scarce have a unique place in chemistry. Metals such as platinum 

enable reactions to occur that would not occur by themselves. Such materials are called 

catalysts. One important reaction is the creation of ammonia gas from nitrogen and 

methane. This reaction feeds the world by enabling the creation of fertilizers. Ammonia is 

made by the Haber process at high temperature (400 C) and pressure (200 atmospheres): 

The reaction can be undone by passing ammonia gas through a heated platinum gauze.

Magnetite  Catalyst  - Fe3O4 

N2 + 3 H2 2 NH3

2 NH3 N2 + 3 H2

Platinum Gauze Catalyst
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ZERO-ORDER CHEMICAL REACTIONS

The breakdown of ammonia is a zero-order reaction, so named, because the breakdown 

does not depend on the amount of ammonia, but rather on the amount of catalyst. Since the 

catalyst is not consumed during the reaction, it does not appear in the equation. In this 

reaction, both the accumulation of products and loss of reactant is linear. The change in the 

concentration of products and reactants is measured in units of moles per liter. Because the 

surface area of the platinum is fixed, the number of reaction sites is constant, and this fixes 

the rate of breakdown.  Another term for reaction rate, is rate of reaction (ROR), synonyms 

that say how fast the concentration of reactants and products is changing.

The zero order case is modeled next.

2 NH3 N2 + 3 H2
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Chemical
[Concentration]

is placed in
square braces
and has units

of moles per liter.

time (s)

[NH3]

0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16 0.18 0.20-0.02-0.04-0.06-0.08-0.10-0.12

0.02

0.04

0.06

0.08

0.10

0.12

0.14

-0.02

-0.04

-0.06

-0.08

-0.10

ReactionRate Þ ~-0.81

Chemical
[Concentration]

is placed in
square braces
and has units

of moles per liter.

time (s)

[NH3]

EXERCISES:
1) Drag the red dot to change the reaction rate.
2) What factors might affect the slope of this 

particular reaction?
3) Can a [Concentration] be negative or imaginary?
4) Can the concentration of  products be deduced?

Zero-Order Chemical Reactions
Lecture14-ZeroOrderKinetics.gx

2 NH3 N2 + 3 H2
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FIRST-ORDER REACTIONS

When the rate of a reaction is governed by the concentration of a single rate-limiting 

reactant we say the reaction is first order. It is modeled by the rate equation:

where the concentration of [A] is in moles per liter of volume and is understood to be a 

function of time.  The rate constant k has units of inverse seconds: sec-1, or frequency. 

Said again: For a first-order reaction, the reaction rate is directly proportional to the 

concentration of one of the reactants.

]A[k
dt

]A[d
rreactionofrate 
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FIRST-ORDER REACTIONS

First order reactions include not only chemical reactions, but nuclear reactions such as the 

decay of Tritium shown above. The above equation says that Tritium (2 neutrons + 1 proton) 

decays to Helium3 (1 neutron + 2 protons) via spontaneous release of a fast electron and an 

electron antineutrino.  This gives rise to “radioactive decay” and the concept of half life.

As a first order reaction proceeds, there is less of the reactant left to participate in the 

reaction. Therefore, by nature, a first order reaction is not linear but rather exponential!

One product that will glow for a decade is made by

placing Tritium gas inside a phosphor coated tube 

This first-order reaction case is modeled next:

e
3
2

3
1 eHeT  

- photo courtesy  firebox.com
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half

t
half

[A] =[A]
0
 ·e

-t·log(2)/thalf

Þ
A0

2

Þ
A0

4

O

EXERCISES:
1) Zoom the graph and drag the red dot to set the half-life of 

tritium at 12.3 years (Jahre).
2) Use the graph to estimate the amount of tritium left 5, 10, 

and 100 years after the 1954 Castle-Bravo bomb explosion 
assuming that the initial concentration was 100 units.

3) Differentiate the expression below to prove that radioactive 
decay is a First-Order reaction modeled by:

First-Order Reactions
Lecture14-FirstOrderReaction.gx
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OTHER COMMON FIRST-ORDER REACTIONS

Hydrogen Peroxide, a household bleaching agent, decomposes to water and oxygen:

 +

Sulfuryl Chloride, a fumigant, decomposes completely to sulfur dioxide and chlorine gas:

 +

2222 OOH2OH2 

2222 ClOS2ClSO2 
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Before we discuss more complex reactions, lets take a moment to notice that The 
Business of Falling shares a similarity to the Zero-Order Chemical Reaction. Many 
times the equations that describe one situation can be used to describe another, 
seemingly unrelated one. 

Where we had z for altitude in the falling case, we have the concentration of 
ammonia [NH3] in the zero-order reaction case.

Where we had v = dz/dt fall rate, we have r=d [NH3]/dt = k in the zero-order 
reaction case.

In the falling case, the jumper subjected to air resistance  reaches a terminal 
velocity, after which they fall at a constant rate. In the zero-order reaction the same 
situation occurs once the platinum catalyst saturates with reactant.

DIFFERENT SITUATION – SIMILAR EQUATIONS
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time (s)

[NH3]

Moles/Liter

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.05

-0.05

-0.10

-0.15

-0.20

ReactionRate

time (s)

[NH3]

Moles/Liter

Just as with the falling case, it is useful to look at the original variable and the 
derivatives at the same time. This allows one to see the relationships between 
position, velocity and higher-order rates of change.

The derivatives may be placed on the same graph as the original function, but it is 
important to remember that the units are always different. The original variable 
carries its original units, the derivative carries those same units divided by time 
when rates are involved. When modeling reactions, we make assumptions such as:

1) the reaction rate reaches a constant value instantly.
2) the reaction stops abruptly.

CHEMICAL REACTION RATES
Lecture14-ZeroOrderConstant.gx
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SECOND-ORDER CHEMICAL REACTIONS

There are six types of chemical reactions. Reactions which take the form:

are called direct-combination or synthesis reactions, where A, B and C are the chemical 

species and a, b and c are the coefficients that balance the equation - stoichiometrically. 

When a reaction proceeds to conclusion without the formation of intermediate states the 

reaction rate is given by:

Where the order of the reaction is given by a + b. For the second-order reaction we have:

The burning of high sulfur coal creates sulfur trioxide which leads to sulfuric acid rain by the 

reaction:

cCBbAa 

]B][A[kratereaction 

ba ]B[]A[kratereaction 
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ACID RAIN: A SECOND-ORDER CHEMICAL REACTION

We want to model the concentration of sulfuric-acid (H2SO4) rain,

resulting from the combination of sulfur trioxide (SO3), from burning coal,

and atmospheric moisture (H2O). The chemical equation for this reaction is :

1 SO3 + 1 H2O  1 H2SO4

This is a second-order reaction which proceeds rapidly. For brevity let:

A = [SO3]  B = [H2O]  C =[H2SO4]

Our rate equation is:

Our stoichiometry is:
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ACID RAIN: CONT’D

Let’s solve for the concentration of the product, sulfuric acid, C. At the beginning of the 
reaction, we assume the following initial conditions apply:

Now we express A and B in terms of C using stoichiometry:

Every time we make one mole of C we use up one mole of A and one of B, thus the rate 
equation becomes:

Which when combined with the original equation:

Can thus be transformed into:

Using the initial conditions above.

  
     

0 0 0 0 0 0
0 0 0t t tC C A A B B

   
0 0

A A C B B C

   
dC dA dB

dt dt dt


dA

k A B
dt

         
0 0

( )( )
dC dA dB

k AB k A C B C
dt dt dt
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ACID RAIN: CONT’D

Thus we have exploited stoichiometry to go from one equation in three unknowns (A, B, C) 
to one equation in one unknown (C) to obtain an equation for the rate of change of the 
concentration of C.

Trimming our grand equation, we obtain:

Which we note contains C multiplied by itself.

Discovering the function C that satisfies this first order differential equation requires 
integration techniques we will soon investigate. Using wxMaxima™ (see Lecture14-
SecondOrderSolution.wxm) yields:
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ACID RAIN: CONT’D

Note that math is a like chemistry, where equations “react” with each other to form new 
ones. This is deeply mysterious. We make the rules for math and they lead to unanticipated 
places. Who makes them for chemistry?

Before we model this result, we need to repeat the argument, this time solving for the 
concentration of the reactants instead of the products. Since one part of A reacts with one 
part of B, the equations for A and B will be similar. But before we solve the whole system, we 
just observe:

Since C is known as well as A0 and B0, we are done.

We plot the three equations for [A], [B] and [C] using Geometry Expressions™ to obtain the 
rate of change of concentration versus time.
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Concentration 

[moles/liter]

time [seconds]

1 2 3 4 5 6 7 8 9 10-1-2-3-4

1

2

3

4

5

6

7

-1

Þ ~0.78

[C]

k

[A0],[B0]

[A],[B]

Concentration 

[moles/liter]

time [seconds]

EXERCISES:
1) Drag the controls to adjust the rate constant k and initial 

concentrations of reactants [A0] and [B0].
2) Record your observations.
3) What is the meaning of a positive rate constant?
4) What is the meaning of a negative initial concentration?

Second-Order Reactions
Lecture14-SecondOrderKinetics.gx
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1. Six Types of Chemical Reactions

2. Differential Rate Laws

3. Rate Equations

4. Algebra of Products and Reactants

5. Chemical Synthesis Reactions

6. Acid Rain

7. Direct Combination Reactions: Sodium Oxide

Na2O + H2O → 2 NaOH

CHEMISTRY RATE-OF-REACTION REFERENCES
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