🔢 Goldbach's Conjecture Explorer

Interactive exploration of the most famous unsolved problem in number theory

© van2025

🎯 Basic Goldbach Explorer

Goldbach's Conjecture

$$\forall n \in \mathbb{E}, n > 2: \exists p_1, p_2 \in \mathbb{P} \text{ such that } n = p_1 + p_2$$
20
4
50

☄️ Goldbach's Comet

Goldbach Function & Hardy-Littlewood Estimate

$$G(n) = |\{(p_1, p_2) : p_1, p_2 \in \mathbb{P}, p_1 + p_2 = n, p_1 \leq p_2\}|$$ $$G(n) \sim 2\Pi_2 \prod_{p|n, p \geq 3} \frac{p-1}{p-2} \cdot \frac{n}{(\ln n)^2}$$
1000
10
0
Average Representations
0
Maximum Representations
0
Points Plotted
0
Theoretical Average

⭕ Hardy-Littlewood Circle Method 3D

Circle Method on Complex Plane

$$S(\alpha) = \sum_{p \leq n} e^{2\pi i \alpha p}, \quad \int_0^1 S(\alpha)^2 e^{-2\pi i \alpha n} d\alpha$$
30
Mouse: Drag=Rotate, Wheel=Zoom, Ctrl+Drag=Pan

Major Arcs (Blue): Near rational points a/q with small q

Minor Arcs (Green): Away from rationals

Amplitude Wave: Number of representations around perimeter

🧮 Chen's Theorem Visualization

Chen's Result (1973)

$$\forall n \text{ large, even}: \exists p \in \mathbb{P}, m \text{ such that } n = p + m$$

where $m$ is prime or semiprime: $m = p_1 \cdot p_2$

100

🔬 Interactive Research Avenues

1. Advanced Circle Method

10
$$\left|\sum_{n \leq X} e^{2\pi i \alpha n}\right| \ll X^{1/2 + \epsilon}$$

2. Sieve Theory Refinements

5
$$S(\mathcal{A}, \mathcal{P}, z) = \sum_{n \in \mathcal{A}} \prod_{p \in \mathcal{P}, p < z} (1 - \chi_p(n))$$

3. L-functions and Zeros

50
$$L(s, \chi) = \sum_{n=1}^{\infty} \frac{\chi(n)}{n^s}$$