
Van-AI-ML-Project02

February 27, 2021

1 Parkinson’s Screening By Voiceprint Analysis
AI-5383
L. Van Warren
Assigned: Tuesday, February 23, 2021
Prof. Mariofanna Milanova
TA. Imran ‘Md’ Sarker
University of Arkansas, Little Rock

1.1 Introduction - Collection and Analysis of a Parkinson Dataset
This is a review of the paper whose subject is the title, and may be clicked to reference it. Unlike
typical reviews this one is a living document, a Python Jupyter notebook, that allows its results
and follow-on work to be executed by the reader. It can also be used as a reference template for
similar machine learning investigations.

This was an interesting paper for two reasons. It introduces the revolution that a degenerative
disease, like Parkinson’s, that plagues millions, can be telediagnosed by voiceprint. With later
work it developed into an excellent comparative platform for six machine learning algorithms we
will run below.

Three of these algorithms had higher than high 95% accuracy we will see in the Results Section
below.

We will run all six of these below in a moment.

1

https://bit.ly/3bFg455

The original work, and paper published from it, only used Support Vector Machines and K-Nearest
Neighbors. However, it did not detail or discuss a portion of method, process and technology that
enabled it to be so effective. This cleverness took place in two steps, the Speech Parsing Section
and the Feature Extraction Section of the Data Collection flow shown here in a diagram, Figure 2,
from the paper:

The speech parsing section was, a presumably manual, extraction of the sound waveforms repre-
senting specific utterances like the vowel ‘o’ and the word ‘four’ for each of the patients. The next
stage feature extraction was much more significant. In order to produce and label the data pro-
vided it was necessary for them to transform the time-domain speech data into frequency-domain
samples, and then label specific frequency bands in the data according that were most likely to
correspond to patients who were negative and positive for the illness. The clue to this is in the
waveform diagram, Figure 1 from the paper:

2

According to the paper, ‘the speech is parsed to be split into voice samples, and time-frequency
based features are extracted from the voice samples using Praat acoustic analysis software.’ It was
this specific feature extraction that enables the algorithm to work, and it may be that that portion
of the algorithm is being held back as proprietary, but the high frequencies appearing in the bottom
waveform are a clue that there are a cluster of frequencies that are diagnostic for Parkinson’s and
this is the first place that someone trying to reproduce the full experiment would start. These speech
aspects are listed in the paper as telltale features of Parkinson’s: - dysphonia (defective use of the
voice), - hypophonia (reduced volume), - monotone (reduced pitch range), - dysarthria (difficulty
with articulation of sounds or syllables) Three of the four are frequency domain attributes and
hypophonia is a time domain attribute that can also be acquired by the amplitude of the frequency
domain bin contents. Here is a list of the features extracted in the paper, and this list is quickly
examined by plotting a series of histograms from the supplied data to confirm plausible trends.

3

The data collected in the context of this study for the original study included:

• 20 PWP (6 female, 14 male) and
• 20 healthy individuals (10 female, 10 male)

who appealed at the Department of Neurology in Cerrahpaşa School of Medicine, Istanbul Univer-
sity Test group consists of patients who are suffering from PD for 0 to 6 years.

But inspection of the dataset showed that this number had grown from 40 subjects to 195. It

4

is worth noting that in the larger dataset there are about 140 positive patients and 45 negative
patients, so the data is unbalanced in that respect. This is noted in the code as well, and be
computed exactly if desired. I did not have time to trace the pedigree of the additional data used
in the analysis below, but it could be one reason that the accuracy went from 79% and 82% for
k-NN and SVM with 40 subjects to 98% and 90% in the 195-subject case.

The Classification methods include:

• Classification with Leave-One-Subject-Out (LOSO)
• Classification with Summarized Leave-One-Out (s-LOO)

Evaluation Metrics: The evaluation metrics are repeated from the paper because they are the
bread-and-butter formulas of data science and it never hurts to review them. It also gives the
author a chance to practice inserting LaTeX math formulas in Jupyter notebooks and getting them
formatted correcly. The figures of merit for classifiers are:

• Accuracy
• Sensitivity
• Specificity
• MCC

Accuracy is the ratio of correctly classified instances to all instances:

accuracy =
TP + TN

TP + TN + FP + FN

Where: - TP true positives - TN true negatives - FP false positives - FN false negatives

Sensitivity and specificity are statistical measures of correctly classified positive and negative in-
stances, respectively:

sensitivity =
TP

TP + FN

specificity =
TN

TN + FP

The Receiver Operating Characteristic (ROC) plots sensitivity vs. 1-specificity, but we will label
the axes as TP vs. TN for brevity. These graphs are provided by real-time computation below.

Mathews Correlation Coefficient (MCC) is a measure that shows the quality of binary classification
in machine learning. It is stable even if the class densities are considerably different. MCC is a
correlation coefficient between the predicted and observed binary classifications and gets a value
between –1 and +1. The formulation of MCC metric is given as follows:

MCC =
TP · TN − FP · FN

2
√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)

This coefficient gets the value of: - +1 when the classifier makes perfect predictions, - –1 when the
predictions and actual values totally disagree, and - 0 when the classification is no better than a
random prediction.

5

2 Libraries
[1]: import math

import os
import sys
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sea
import xgboost as xgb
from scipy import interp
from scipy import stats
from cycler import cycler
from itertools import cycle
from xgboost import XGBClassifier
from sklearn import datasets
from sklearn import metrics
from sklearn.preprocessing import MinMaxScaler
from sklearn.preprocessing import label_binarize
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LogisticRegression
from sklearn.metrics import roc_curve
from sklearn.metrics import auc
from sklearn.metrics import roc_auc_score
from sklearn.multiclass import OneVsRestClassifier
from sklearn.naive_bayes import GaussianNB
from sklearn.neighbors import KNeighborsClassifier
from sklearn.svm import SVC
from sklearn.tree import DecisionTreeClassifier
%matplotlib inline

2.1 Van Graphics Lib

[2]: # Extensions to matplotlib
lvwarren@ualr.edu
Tue Feb 23 17:16:12 CST 2021

import math
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm
from cycler import cycler

van_color_list = ['#C83232', '#199619', '#0000FF',
'#009696', '#BB00BB', '#FFFF00',
'#000000', '#FFFFFF', '#808080']

6

def van_defaults(plot, x_size=10, y_size=10):

My canonical graphing style
plt.xkcd()
plot.figure(figsize=(x_size,y_size))

plot.rcParams['figure.figsize'] = [10, 10]
plot.rcParams['figure.facecolor'] = 'FFFFFF'
plot.rcParams.update({'font.size': 12})
plot.rcParams['axes.facecolor'] = '#AADDAA'
plot.rcParams['lines.linewidth'] = 3
plot.rcParams['lines.color'] = 'red'
plot.rcParams['axes.prop_cycle'] = cycler('color', van_color_list)
plot.grid(True)

def van_labels(plot, x_label, y_label, title):
plot.xlabel(x_label)
plot.ylabel(y_label)
plot.title(title)

def van_limits(plot, mx, px, my, py):
plot.xlim((mx, px))
plot.ylim((my, py))

hidden by underscore because of singularity removal
def van_OoX(x):

y = 1/x
y[y > math.pi] = np.inf # remove singularity
y[y < -math.pi] = -np.inf
return(y)

def van_TaN(x):
y = np.tan(x)
y[y > math.pi] = np.inf # remove singularity
y[y < -math.pi] = -np.inf
return(y)

[3]: van_defaults(plt, 5, 5)
van_labels (plt, 'x', 'f(x)', 'f(x) vs. x for some common functions')
van_limits (plt, -math.pi, math.pi, -math.pi, math.pi)

x = np.arange(-math.pi, math.pi, 0.01)

function_list = [van_OoX(x), x*x, stats.norm.pdf(x) , np.sin(x) , np.cos(x),␣
↪→van_TaN(x) , x, -x]

function_name = ['1/x','x²', 'pdf(x)' , 'sin(x)', 'cos(x)', ␣
↪→'tan(x)','x','-x']

7

for y in function_list: plt.plot(x,y)
plt.axhline(0, color='#808080')
plt.axvline(0, color='#808080')
plt.text(0.5,-3,'van2021')
plt.legend(function_name, title=' f(x)', loc=1)
plt.show();

3 Data Review
3.1 Read Data

[4]: data = pd.read_csv('data/parkinsons.csv')
predictors = data.drop(['name'], axis = 1)
predictors = predictors.drop(['status'], axis = 1).to_numpy()
target = data['status']
data.shape

[4]: (195, 24)

8

3.2 Textual Data Review
• Initially we take a look at the data to make sure the read has worked and that the numbers

are plausible.
• We do a data.__head()__ call to look at the first 5 rows, and it also prints the

data.__shape__.
• We inspect the features by echoing the contents of the variable target defined above.

[5]: data.head()

[5]: name MDVP:Fo(Hz) MDVP:Fhi(Hz) MDVP:Flo(Hz) MDVP:Jitter(%) \
0 phon_R01_S01_1 119.992 157.302 74.997 0.00784
1 phon_R01_S01_2 122.400 148.650 113.819 0.00968
2 phon_R01_S01_3 116.682 131.111 111.555 0.01050
3 phon_R01_S01_4 116.676 137.871 111.366 0.00997
4 phon_R01_S01_5 116.014 141.781 110.655 0.01284

MDVP:Jitter(Abs) MDVP:RAP MDVP:PPQ Jitter:DDP MDVP:Shimmer … \
0 0.00007 0.00370 0.00554 0.01109 0.04374 …
1 0.00008 0.00465 0.00696 0.01394 0.06134 …
2 0.00009 0.00544 0.00781 0.01633 0.05233 …
3 0.00009 0.00502 0.00698 0.01505 0.05492 …
4 0.00011 0.00655 0.00908 0.01966 0.06425 …

Shimmer:DDA NHR HNR status RPDE DFA spread1 \
0 0.06545 0.02211 21.033 1 0.414783 0.815285 -4.813031
1 0.09403 0.01929 19.085 1 0.458359 0.819521 -4.075192
2 0.08270 0.01309 20.651 1 0.429895 0.825288 -4.443179
3 0.08771 0.01353 20.644 1 0.434969 0.819235 -4.117501
4 0.10470 0.01767 19.649 1 0.417356 0.823484 -3.747787

spread2 D2 PPE
0 0.266482 2.301442 0.284654
1 0.335590 2.486855 0.368674
2 0.311173 2.342259 0.332634
3 0.334147 2.405554 0.368975
4 0.234513 2.332180 0.410335

[5 rows x 24 columns]

[6]: target # Presumably labels for 'has Parkinsons' vs. doesn't.

[6]: 0 1
1 1
2 1
3 1
4 1

..

9

190 0
191 0
192 0
193 0
194 0
Name: status, Length: 195, dtype: int64

3.3 Graphical Data Review
• We can spot distribution shapes and trends
• Note in the last graphic we determine that this data is unbalanced with respect to Parkinson’s

Status!
• We plot first 16 columns, those after status are derivative statistics

[7]: def park_plot(a, b, x_title=''):

data_cols = range(a,b)
y = [data.iloc[:,i+1] for i in data_cols]
van_defaults(plt, x_size=6, y_size=4)
van_labels(plt, x_title, 'Number of Subjects',

'Number of Subjects vs ' + x_title)

plt.text(0.85*np.max(y), 5,'van2021')

[plt.hist(y[i], bins=30, alpha=0.50, label='foo') for i in range(0,b-a)]

plt.legend(data.columns[np.add(data_cols, 1).tolist()],
title='Feature', loc=1)

plt.axhline(0, color='#000000')
plt.axvline(0, color='#000000')

plt.grid(False)
plt.show();

park_plot(0,3, 'Frequency (Hz)')
park_plot(3,6, 'Jitter and RAP')
park_plot(6,8, 'MDVP and Shimmer')
park_plot(9,10, 'Shimmer (dB)')
park_plot(10,14, 'Shimmer')
park_plot(14,16, 'NHR and HNR')
park_plot(16,17, 'Parkinson\'s Status')

10

11

12

13

4 Analysis Using Six Different Models
4.1 Scale to Unit Interval and Test/Train Data Split

• Every modeling technique uses scaled version of the data
• Imports sklearn.preprocessing MinMaxScaler
• Remember you have both scaled and inverse transforms available for forward and inverse

maps

[8]: import warnings
warnings.filterwarnings('ignore') # ignore superfluous warning

scaler = MinMaxScaler((-1, 1))
X = scaler.fit_transform(predictors)
Y = target

X_train, X_test, Y_train, Y_test = \
train_test_split(X, Y,test_size = .25, random_state = 7)

4.2 Four Utility Functions
• plot_confusion_matrix: a function’s name that tells you what it does saves

unnecessary comments!

14

• summarize_model_fit: calls plot_confusion_matrix()
• plot_ROC: plot the Receiver Operating Characteristic curve of

True Positives vs. False Positives
• fit_predict_summarize: do the fit, make the predictions, call

summarize_model_fit() to assess the result

[9]: def plot_confusion_matrix(CM):
group_names = ['True Neg','False Pos','False Neg','True Pos']
group_counts = ['{0:0.0f}'.format(value) \

for value in CM.flatten()]
group_percents = ['{0:.2%}'.format(value) \

for value in CM.flatten()/np.sum(CM)]
labels = [f'{v1}\n{v2}\n{v3}' \

for v1, v2, v3 in zip(group_names,group_counts,group_percents)]
labels = np.asarray(labels).reshape(2,2)
plt.figure()
van_defaults(plt, x_size=4.5, y_size=4.5)
sea.heatmap(CM, annot=labels, fmt='', cmap='Blues')
plt.show()

def summarize_model_fit(title, test, pred):
print(f'{title} Model Accuracy: \
{round(metrics.accuracy_score(test, pred)*100,1)}%')

print(metrics.classification_report(test, pred))
print('Confusion Matrix: ')
plot_confusion_matrix(metrics.confusion_matrix(test, pred))

def plot_ROC(name, Y_test, y_pred):
fpr, tpr, threshold = metrics.roc_curve(Y_test, y_pred)
van_defaults(plt, x_size=3.75, y_size=3.75)
van_labels(plt, 'False Positive Rate',

'True Positive Rate',
'Receiver Operating Characteristic')

plt.plot(fpr,tpr) # ROC curve
ident = [0.0, 1.0]
plt.plot(ident,ident)
auc = np.trapz(tpr,fpr) # compute the area using trapezoidal rule
plt.legend([round(auc,2)], title='AUC', loc=4)
plt.text(0.9, -0.30,'van2021', fontsize=10)
plt.text(0.1, 0.90 , name, fontsize=12)
plt.show()

def fit_predict_summarize(model, name, X_train_, Y_train_, X_test_, Y_test_):
model.fit(X_train_, Y_train_)
y_pred_ = model.predict(X_test_)
summarize_model_fit(name , Y_test_, y_pred_)
plot_ROC(name, Y_test_, y_pred_)

15

4.3 Six Standard Models and Results
• XG Boost Classifier - 98%
• Logistic Regression - 88%
• Gaussian Naive Bayes - 69%
• K-Nearest Neighbor - 98%
• Support Vector Machine - 90%
• Classification and Regression Trees - 96%

Note that these analyses all take similar form of fit, predict and summarize.

4.4 Use Function Dictionary to Invoke Models

[10]: # Note to Self: Use Dictionary as Function Dispatcher, so Pythonic!
model_dict = {

'XG Boost Classifier' : XGBClassifier(eval_metric='logloss'),
'Logistic Regression' : LogisticRegression(),
'Gaussian Naive Bayes' : GaussianNB(),
'K-Nearest-Neigbhors' : KNeighborsClassifier(),
'Support Vector Machine' : SVC(),
'Decision Trees' : DecisionTreeClassifier()
}

4.5 Detailed Results Confusion Matrices and ROC Plots
[11]: for name, model in model_dict.items():

fit_predict_summarize(model, name, X_train, Y_train, X_test, Y_test)

XG Boost Classifier Model Accuracy: 98.0%
Confusion Matrix:

16

17

Logistic Regression Model Accuracy: 87.8%
Confusion Matrix:

18

Gaussian Naive Bayes Model Accuracy: 69.4%
Confusion Matrix:

19

K-Nearest-Neigbhors Model Accuracy: 98.0%
Confusion Matrix:

20

Support Vector Machine Model Accuracy: 89.8%
Confusion Matrix:

21

22

Decision Trees Model Accuracy: 95.9%
Confusion Matrix:

23

4.5.1 References

• Original Parkinson Speech Paper
• Parkinson Data
• Parkinson Data Python
• Parkinson Voice Data
• Python Dictionary Comprehension
• Storing Function in Python Dictionary
• Hide Warnings in Python
• ROC Plots
• Numpy max for list of lists
• Adorn Histogram Text
• Add Two Lists Element-Wise
• Mac pbcopy trick
• Panda Dataframe Column Names
• Python Lists
• More Python Lists
• Pandas Dataframe Row and Column Selection
• Pandas Dataframe First Column
• Dataframe as_matrix Deprecation
• XGBoost Introduction
• K Nearest Neighbors Algorithm
• Logistic Regression
• Logistic Regression Sklearn
• K Nearst Neighbors Classifier
• Print Key Value Dictionary Pairs

4.5.2 Acknowledgements

This project extensively modifies code from a University of Maryland Research Project by: Shlok
Khandelwal and Elcin Ergin, Shu Hayakawa, and Timardeep Kaur
It utilizes a confusion matrix pretty printer by Dennis T
Code Repository by Shlok Khandelwal on Github

24

http://bit.ly/3bFg455
https://raw.githubusercontent.com/shlokKh/Parkinsons-Voice-Detection/master/parkinsons.data
https://github.com/shlokKh/Parkinsons-Voice-Detection/blob/master/parkinsonsdata.py
https://github.com/shlokKh/Parkinsons-Voice-Detection
https://www.datacamp.com/community/tutorials/python-dictionary-comprehension
https://softwareengineering.stackexchange.com/questions/182093/why-store-a-function-inside-a-python-dictionary
https://stackoverflow.com/questions/9031783/hide-all-warnings-in-ipython
https://scikit-learn.org/stable/auto_examples/model_selection/plot_roc.html
https://stackoverflow.com/questions/33269530/get-max-value-from-a-list-with-lists
https://matplotlib.org/3.3.4/api/_as_gen/matplotlib.pyplot.hist.html
https://stackoverflow.com/questions/18713321/element-wise-addition-of-2-lists
https://coderwall.com/p/osbzzq/copy-files-to-clipboard-using-command-line-on-osx
https://www.geeksforgeeks.org/how-to-get-column-names-in-pandas-dataframe/
https://www.tutorialspoint.com/python3/python_lists.htm
https://www.programiz.com/python-programming/list
https://www.shanelynn.ie/select-pandas-dataframe-rows-and-columns-using-iloc-loc-and-ix/
https://www.kite.com/python/answers/how-to-get-the-first-column-of-a-pandas-dataframe-as-a-series-in-python
https://stackoverflow.com/questions/61102281/dataframe-object-has-no-attribute-as-matrix
https://machinelearningmastery.com/gentle-introduction-xgboost-applied-machinelearning
https://en.wikipedia.org/wiki/K-nearest_neighbors_algorithm
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://scikitlearn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikitlearn.org/stable/modules/generated/sklearn.neighbors.KNeighborsClassifier.htm
https://stackoverflow.com/questions/26660654/how-do-i-print-the-key-value-pairs-of-a-dictionary-in-python
https://github.com/shlokKh/Parkinsons-Voice-Detection/blob/master/parkinsonsdata.py
https://github.com/shlokKh/Parkinsons-Voice-Detection/blob/master/parkinsonsdata.py
https://github.com/hayakshu/Classification-Analysis-Of-Parkinson-Speech-Dataset
https://medium.com/@dtuk81/confusion-matrix-visualization-fc31e3f30fea
https://github.com/shlokKh

	Parkinson's Screening By Voiceprint Analysis
	Introduction - Collection and Analysis of a Parkinson Dataset

	Libraries
	Van Graphics Lib

	Data Review
	Read Data
	Textual Data Review
	Graphical Data Review

	Analysis Using Six Different Models
	Scale to Unit Interval and Test/Train Data Split
	Four Utility Functions
	Six Standard Models and Results
	Use Function Dictionary to Invoke Models
	Detailed Results Confusion Matrices and ROC Plots
	References
	Acknowledgements

