Knowledge Mapping the Corpus: Part Three
L. Van Warren

Warren Design Vision

March 20, 2002

Preamble
In part one, the definitions and basic concepts of fact extraction and knowledge mapping process were outlined. In part two tangible applications of the process were discussed and developed. Knowledge mapping is quite general and appears in a number of unrelated contexts. This note will focus on hiding the knowledge map and the system architecture of applications that enable knowledge mapping. The mapping of specific facts vs. general facts is discussed. A new result in biotechnology knowledge mapping is discussed. Creating software that enables direct interaction with semantic networks appears to be a viable method for handling knowledge and creating computer assisted reasoning systems (CARS).
The Controlling Idea
The primary idea of this paper is that one can hide the underlying knowledge map from the user and still use a knowledge map for presenting a connected sequence of ideas. Not all users are liturgical enough to tolerate large knowledge maps. When too much complexity is manifest simultaneously, the user can be overwhelmed and lose the ability to focus on any specific line of reasoning. In motion pictures, and even in real life, a temporally ordered set of events is presented to the user as a sequence of images. Such a connected sequence is called a storyline. A storyline constitutes a line of exploration similar to a line of reasoning. Most real motion pictures weave together multiple storylines. Storylines may cross at specific nexus points. Sometimes storylines intersect, overlap for a while and then branch off in a different direction. One can build story synthesizers based on this technology that would take just the start and end points and generate the intervening story. This is extremely useful in understanding biological pathways of disease processes. In the case of entertainment applications, one generates techniques for synthesizing those stories that are the most informative and interesting. In the case of economic applications, one generates the vendor supplier chain recursively and comes to understand critical suppliers, strategic resources and how changes in one sector affect another. Knowledge mapping is most useful for understanding a complex and interdependent set of cause and effect relationships. When a set of cause and effect relationships becomes complex enough, the human tendency is to throw up one’s hands and call the system, “a phenomena” or “the stock market”. When cause and effect relationships are enumerated and their interdependencies are understood, quality analysis can ensue resulting in benefit.
One can follow a single line of reasoning in a knowledge map and use the consecutive appearance of entities and relationships encountered to present a sequence of images, that is, a story, to the user. The user sees the entities and the relationships depicted as the line of reasoning is traversed. The resulting story is produced by traversing a particular line of reasoning. It can be ordered in time, ordered in space, ordered along a set of conditions, or ordered along a set of decisions. There are often many ways to go from a starting node to an ending node. The choices made along the way accumulate in a tuple called the decision vector. The user can leave breadcrumbs, analogous to browser bookmarks, along their path, as way of retracing their steps, revisiting decisions, and exploring alternate lines of reasoning at a later time. Recall that the atomic granule in a knowledge map is that of a fact.  An explicit decision vector is the list of breadcrumbs left by the user as they traverse a specific line of reasoning. A breadcrumb is required any time there is more than one arc leading away from a node (an entity). In the absence of an explicit decision vector the user may request the shortest path between a starting and ending concept. Requesting that the path traversed have certain properties produces an implicit decision vector, which should also be made available to the user for interrogation and retracing. There may be more than one shortest path. In a similar fashion the user might request the longest path or even the fluffiest path. The fluffiest path is that path which has the most possible branches associated with it, that is, the longest decision vector. Note that a short path may have a long decision vector (lots of branch points) and visa versa. The sparsest path is that path which has the fewest possible branches, that is, the shortest decision vector. Note that a long path may have a short decision vector (few branching points) and visa versa.
Breadcrumb Growth Is Linear

Notice that even for a highly connected knowledge map that the number of breadcrumbs in our decision vector accumulates at a roughly linear rate.  This is important. Were the decision vector to grow at a quadratic or exponential rate, it would be difficult for a human user to shoulder the decision making load.
Facts vs. Events

As we make the comparison between lines of reasoning and storylines, we must more fully understand the relationship between a fact and an event. We also need to understand the difference between specific instance information, and more generalized class or category information.

All events are facts, but facts are more general than events. For example:
The tree fell at 11:10 pm on 3/6/2000
This is a specific event. It is a fact as well.

The male cardinal is bright red

is also a fact, but it is not an event because it is not associated with time.
A fact can depend on time and not be an event, as in:

if(time is night) the sky is dark
Thus we have the following definition:

Events are facts that are associated with a specific time in history.

Events can also be spatially labeled, or associated with a specific location. Events are facts tied to a coordinates system, time, space or both. Events can be fictitious, virtual or predicted in the future. The certainty of a predicted event is zero, until it occurs (or doesn’t). Virtual events can still be quite useful for imagining or modeling how systems work. The principle of virtual work in structural analysis is an example of this.
Specific Instancing vs. Class Generalization

An open question in concept mapping is drawing the distinction between specific instances and class generalization. As an example one might consider what is true of about cars and highways. On the other hand, one might consider what is true of a specific model of car or a specific length of highway. When representing general concepts, one might talk about those attributes that cars have in common, say four wheels, some source of motive power, some occupants and so forth. When representing specific instances, one speaks about things that are true for a particular car, such as make and model, the color, the type of engine, and the names of the occupants. One then needs an ontology for the occupied moving car, the empty stationary car, and if the emergency brake is left off, the moving unoccupied car! When scouring the literature one encounters both general and specific instance information. Specific information can be accumulated and compared to create generalizations. General information, when encountered, can be used to create generalized visual templates that can be used for understanding specific instances later.

An interesting example of a general concept map vs. a specific instance map is that of an electronic circuit. In the general case, the circuit components have symbolic values and the relationships are represented symbolically and are true for all instances.

[image: image1.png]



The General Case
In the specific case the circuit components have specific values and the relationships are represented numerically and are true only for the current instance.

[image: image2.png]1K

R2
1K

v





The Specific Case

In the general case, we do not have specific values for the components, but we have a complete understanding of the relationships between them. In the specific case our knowledge is limited knowing the component values for that circuit and that circuit only.

In both cases, Kirchoff’s laws are used to determine the voltages at all nodes in a circuit and the currents that flow through each branch. So in a knowledge map as a circuit, the pertinent relationships are voltage, current, resistance, etc. When knowledge mapping cells, the pertinent relationships are who is binding to who with what affinity and turnover rate subject to the kinetics of macromolecular crowding.
There are things that are true for humans as a category, as in 46 chromosomes in the diploid cell. In turn one might want a system for diagnosis and treatment that indicates what is true for a specific person, as when an extra chromosome appears in certain genetic conditions, or more frequently, an inherited or acquired mutation that a person carries that affects their health. When performing genetic counseling prior to marriage, one would compare the knowledge maps for two individuals to maximize the likelihood of not passing on genetic diseases to offspring.
An Unexpected Result

Previously it was argued that one must separate two kinds of information when reasoning about biological systems, i.e. what vs. how. 
What refers to what we know in terms of cause and effect relationships.

How refers to how we deduced or discovered it.

These two kinds of information are hopelessly intermingled in the biotechnology literature and other bodies of knowledge. When knowledge mapping the corpus for cancer gene ontologies both kinds of information must be retained, but must be handled and sorted separately. Less formally, what information enables understanding cancer, while how information enables the creation of more effective treatments.

Retaining only what will produce the following problem with respect to cancer and that is this. Interaction with the knowledge map will enable investigators to know what causes cancer but will not provide the information on how to treat it more effectively. The procedural medical technology developed to discover cell function carries with it the techniques necessary to introduce repairs into the cells, such as gene therapy and DNA synthesis. It is not sufficient to only understand what causes the problem, but we must retain how information in order to fix it.


Facts are Forever
Retaining both what and how information creates something of a problem. The how kind of information of technique and procedure tends to change rapidly as advances in science occur. What information remains invariant over time, i.e. facts are forever. If you look the same thing again, you will find the same answer. This postulate of repeatability is the essence of the scientific method that governs all of science and engineering. Practically this postulate is affected by dogma, hemlines, quantum theory and the uncertainty principle in that one is not always allowed to see everything. The famous example is Heisenberg’s statement on our ability to measure the simultaneous position and velocity of an electron. Despite this we are allowed to know that an electron HAS position and velocity and a mutated cancer gene has a particular DNA sequence. We can introduce alterations to that DNA sequence to some degree. 
The point is that the resources expended to deduce what information tend to be better spent than those cataloging how information, since the how information is in need of more frequent maintenance. Nonetheless, in the final picture, both kinds of knowledge must be retained. There are also important issues regarding who created the information and whether that information is credible. Who information provides an initial approximation as to the certainty of the facts in the map. Where information is also useful. It might be useful to know the institution or geographic location from which the information originated. When information is also essential, not only for evaluating certainty, but also for assessing relevance.
Specific Lines of Reasoning: A Biotechnology Example.

Consider a knowledge map M of non trivial complexity, say a few hundred nodes. Let us pretend we have created a knowledge map of DNA repair mechanisms by fact extracting selected biotechnology literature. Recall that nodes represent entities, for example, proteins. Arcs represent relationships between entities, like “binds to”.

We begin a specific line of reasoning by choosing a start node. Let’s say we choose telomerase. Telomerase is an enzyme responsible for the repair of chromosome ends. When the chromosomes ends are not repaired, they fray and the genes at the chromosomes ends are not expressed properly. When DNA is duplicated during mitosis, frayed ends cause the propagation of errors into daughter cells. Many people believe that chromosome fraying is a key part of the aging process. If we understood it, perhaps we could defer or delay aging.  So telomerase is interesting for understanding the aging process. Our first line of reasoning would begin with the node for telomerase and end with the node for aging.

Certain kinds of germ cells, such as sperm and egg, are said to be immortalized. Some kinds of cancer cells, such as the HeLa cell line, acquire the property of immortality and do not die after a set number of generations. They duplicate indefinitely without distress.  Does the expression of telomerase in such cells imbue them with their immortality?  Can cells mutate so that they begin to express telomerase when they shouldn’t? So telomerase is interesting for cancer. Our second line of reasoning would begin with the node for telomerase and end with the node for cancer.

Certain kinds of viruses such as HIV are enabled by enzymes called reverse transcriptase. These enable DNA to be synthesized from messenger RNA templates and inserted back into the host DNA. There is one additional detail to consider: DNA repair is implemented by DNA Polymerase I, which contains a reverse transcriptase fragment called the Klenow fragment. Reverse transcriptases are useful tools for research. The Polymerase Chain Reaction or PCR procedure enables enable DNA fragments to be duplicated at exponential rates so that minute amounts can become detectable. Telomerase itself is a reverse transcriptase, so telomerase is interesting in regards to understanding HIV. Our third line of reasoning would start with the node for telomerase and end with the node for HIV.

These three lines of reasoning are independent paths through a concept map. We want to see these paths. These paths may share certain subpaths in common. We might like to see just what the common subpaths are and follow them in new and unpredictable directions. We might want to see the entire knowledge map, or we might want to see just the lines of reasoning we specified highlighted within the knowledge map. When briefing others we might want to see the concepts presented in a story order, without ever seeing the knowledge map.

We need a language and an interactive system for doing just this.

Based on the three lines of reasoning presented above, telomerase makes an interesting starting node in the knowledge map upon which to begin a specific line of reasoning. Let us cast this in more general terms:

Consider a start node A and a terminal node B such that A and B are connected via one or more traversals of the map M. The map M is a graph, and the traversal of a graph is just like driving your car from your home and to the grocery store.  There is often more than one way to get there, and the scenery varies and who you might run into along the way is different, but in the end you get to the store.  You might even travel in exactly the opposite direction and incur all kinds of delay and expense, but if you persevered, you would still get to the grocery store if a path existed.

Let’s conclude our specific example with a thought experiment. Let the start node of our investigation be telomerase and the end node be aging. What sequence of relationships and nodes might we encounter? Consider the same start node but with the end node of cancer. How might these two paths be the same, and how might they be different? Finally consider the end node of HIV and ask the same question. We must design a system that accomplishes these tasks and place it in the hands of domain experts.
Limitations of “Perfect Knowledge”
Even in the imagined case where our knowledge of the situation is perfect there are limitations. Will gene therapies for cancer be 100% effective? Will we be able to guarantee 100% penetration of the virus carrying the repair into each and every cell? Small ligand drug therapies with high penetration seem more promising as with Gleevec™ for chronic myelogenous leukemia. Gleevec™ must be taken continuously over the course of the person’s life. So our quest for understanding and treating cancer will continue to be a combination of traditional and newer methods.  Traditional methods include the slash, burn and poison, of surgery, radiation and chemotherapy hormone receptor adjuvant therapy using Tamoxifen™ and Raloxifene™, and monoclonal antibody therapy using Herceptin™ and special purpose drugs for special purpose cancers, as with Gleevec™. Newer methods will match an individual’s specific cancer to the treatment more exactly.
Production Values in Knowledge Maps

A node in a knowledge map should be more than an English word enclosed by a shape. Concepts should be represented by icons drawn from a curated standard nomenclature, international in meaning and evolving with the advance of knowledge. There is a large body of iconic work that exists on the web, in the protein databank and in programs like SmartDraw™ and Visio™ and in packages from vendors like Tom Sawyer software. When no icon is available a correctly filtered image should be used if it is possible to convey the concept with an image. The Google™ image library provides an automatic way of generating this. Animations are appropriate for verb phrases and thus relationships usually represented by an arc. The library of chosen icons for given concepts are drawn from an evolving standard for visual nomenclature, that when possible is completely language free. Labels can adorn icons, and should be in the language of the user, but labeling should toggle under user control. Alternatively envelope shape, line thickness, fill pattern and color can be used to convey meaning.  All lines and edges must be anti-aliased and drop shadows should be used whenever possible to provide critical visual and perceptual cues. The viewer should be implemented in a language that is supported on more than one hardware and software platform to maximize portability and to include the widest range of possible users.

Arcs in knowledge maps should be arrows when the relationship between the two concepts is not commutative. Commutative relationships need no arrowheads. The color thickness and pattern of arcs should also be drawn from a standard nomenclature for relationships. Standard relationships such as, “is a”, should have readily recognizable arcs. Abstraction must be supported by a grouping operating that is invertible. There is a correspondence between levels of indentation in an outline, and the number of subgraphs in a knowledge map. An interface like the one Microsoft Word uses for outlining has its corresponding graphical sibling. That must be implemented.
As we traverse the map from A to B, there may be more than one route. If that is the case, we make a decision about which path we would like to take, and leave a breadcrumb behind should we come to regret the path we have taken. Later, we can come back and reexamine our choice before the witch throws us in the oven.
Layout Algorithms
There are several common layout algorithms. For example Microsoft Visio™ supports hierarchical, directed and radial layouts for 2-D graphs drawn in the plane.

[image: image3.png]


[image: image4.png]


[image: image5.png]



Hierarchical, Directed and Radial Layouts from Visio™
Layout algorithms may also attempt to minimize the number of edge crossings that do not add meaning to the graph. In a graph of sufficient complexity to be useful, there will usually be one or more edge crossings.  Graphs drawn in 3-D do not suffer from this limitation, but require more sophisticated rendering and presentation software for the user. There are also energy methods that can be devised so that the graph minimizes the elastic strain or electromagnetic field energy and falls into some minimum potential energy configuration.  In these cases, given knowledge maps take on a signature shape that is dependent on their content.
Recently Byland and Espinoza suggest that game engine technology will make the interactive exploration of 3-D knowledge maps, and their storylines more tractable.
Architectural Approach for Knowledge Mapping
When putting together a practical system for fact extraction and knowledge mapping one must make decisions regarding operating system(s), implementation language, graphics support, user interface support, user expertise, and ease of use, among other things. The fact extraction parts of the knowledge mapping process are greatly facilitated by a text processing oriented operating system. This makes a Unix™ based system preferable. Fortunately Unix™ has penetrated the market in sufficient forms that this does not create a hardship for most users. Linux, and more recently the Macintosh operating system are Unix™ based. The gene mapping work that the author did for ten breast cancer genes was done with AT&T Unix™ running on top of a Windows operating system. Thus a Unix™ approach is appropriate. Language choices include ‘C’, C++, C#, Java, Perl, Awk, and others. ‘C’, C++ and Perl are preferred because of their ubiquity and platform independence. For the graphical display of the knowledge map the author has chosen OpenGL because of its widespread graphics support. It is conceivable that one might run two operating systems in tandem, one for the fact extraction portion of the task and another for the interactive visualization. Tandem systems conveniently networked provide ample flexibility for the task. For large scale investigations a database component will appear and deductive database engines may provide additional leverage for formulating complex queries. When real time performance becomes a bottleneck, embedding the entire application in solid state disk technology will accelerate performance significantly.
A Little Language for Knowledge Maps

Kernigan discussed how “little languages” can be developed to support interaction over a domain of limited scope. Examples of these are music, chemistry, and and graphs.  A little language for concept maps can be used to represent the underlying maps with portable ASCII data files and for performing operations on them. Each action specified by the little language corresponds to an interaction scenario with the user. A minimal beginning subset is provided below:
Commands

open mapFile;
// open and read the knowledge map file


//

close;
// Close the currently open map file


//

start nodeName;
// Specify the starting node name or

// choose Tools(Assign Start Node menu item.

// System highlights the start node.
end   nodeName;
// Specify the ending node name or

// choose Tools(Assign End   Node menu item.

// System highlights the end node.

shortest;
// Highlight shortest path.


// Tools(Shortest Path menu item

longest;
// Highlight longest path.


// Tools(Longest Path menu item.

fluffiest;
// Highlight longest path.


// Tools(Fluffiest Path menu item.

sparsest;
// Highlight longest path.


// Tools(Sparest Path menu item.

hide;
// Drop non-highlighted parts of map.


// View(Hide Non-highlighted menu Item.

storyline;
// Produce story traversal.

// View(Storyline menu item.

layout;
// Beautify the visible portion of the map.


// View(Layout menu item.

nodelabels;
// Toggle node labels;


// View(Node Labels on/off menu item.

arclabels;
// Toggle arc labels;


// View(Arc Labels on/off menu item.

shapes;
// Use shapes for nodes

// View(Use Shapes

icons;
// Use icons for nodes


// View(Use Icons

Grouping and Abstraction Operators
A grouping (abstraction) operator is essential to any "knowledge browser". Drawing a circle around a group of nodes enables one to hide the "cliques" – the highly connected subgroups. This is extremely useful for knowledge maps that are going to be interrogated by human users.  The old saying that a college student can only handle a 7 digit phone number applies to visual complexity as well. Even though the eye embraces complexity, when we are traversing a directed line of reasoning we would like to make the traversal something we can mentally summarize. When we are rendering concepts, we need to be able to group (and hide the details of) related concepts so we can just deal with a simple overview.  Note that grouping is a recursive operator, but that even a single level of grouping is better than none at all. Eventually very long chains of reasoning including set operations, filtering and concatenation will be done by people working interactively with a machine.  Machines will do the work, but we still need to produce a human readable summary representation.
Let's say that I have a knowledge map, a graph generated with say a thousand facts, as in the ten cancer gene example.  Some of the nodes (atoms) are going to have more connectedness than others.  Let's quantify this as the number of arcs connected to a node, that is, its arity.  Nodes of high arity are in some sense "primal", and perhaps correspond to Prueitt's notion of prime categories.  Don’t stop reading because here is the good part:

Consider pairs of nodes that are directly connected (within one hop).  We can now consider the arity of the pair, that is, we draw a circle around the pair and ask how many incoming arcs there are. We might give the node a name using some convention, like concatenation to produce a new name, like Fawcett-Majors.  Now instead of drawing the pair, we draw a single node that represents the pair.  Instead of working in pairs, we could work in triples and in quads and so on, though at some point you can’t carry your genealogy in your name! Or we could just work in pairs and recursively look for regions of low arity. Local minima of arity constitute summaries, abstractions or groups that are easier to deal with.
Closing Remarks
Knowledge management technologies are the new era in bioinformatics and other applications. Hopefully knowledge mapping will play some role in codifying and navigating the flood of knowledge emerging in the post genomic era.
© 2002 L. Van Warren ● www.wdv.com ● All Rights Reserved

