Entanglement-Based Gravity: An Interactive Exploration

Investigating the hypothesis that gravitational force emerges from quantum entanglement between matter with shared primordial origins

1. Standard vs Entanglement Gravity

Introduction

Traditional gravity assumes universal attraction between all masses. Our hypothesis suggests gravity emerges from quantum entanglement correlations, making it dependent on shared primordial origins.

Standard Gravity (Scalar):

$$F = G \frac{m_1 m_2}{r^2}$$

Entanglement Gravity (Scalar):

$$F = G_{eff}(E_{1,2}) \frac{m_1 m_2}{r^2}$$

where $G_{eff}(E_{1,2}) = G_0 \sqrt{E_1 \cdot E_2}$ depends on entanglement correlation $E_{1,2}$ between masses

Vector Analysis: From Scalar to Vector Gravitational Laws

1. Position Vectors

Object positions:

$$\vec{r_1} = x_1\hat{i} + y_1\hat{j} + z_1\hat{k}$$

$$\vec{r_2} = x_2\hat{i} + y_2\hat{j} + z_2\hat{k}$$

2. Relative Position and Distance

Relative position vector:

$$\vec{r_{12}} = \vec{r_2} - \vec{r_1} = (x_2-x_1)\hat{i} + (y_2-y_1)\hat{j} + (z_2-z_1)\hat{k}$$

Distance (magnitude):

$$r = |\vec{r_{12}}| = \sqrt{(x_2-x_1)^2 + (y_2-y_1)^2 + (z_2-z_1)^2}$$

Unit vector:

$$\hat{r_{12}} = \frac{\vec{r_{12}}}{|\vec{r_{12}}|} = \frac{(x_2-x_1)\hat{i} + (y_2-y_1)\hat{j} + (z_2-z_1)\hat{k}}{r}$$

3. Vector Force Law

Gravitational force on object 1:

$$\vec{F_1} = G_{eff} \frac{m_1 m_2}{r^2} \hat{r_{12}} = G_{eff} \frac{m_1 m_2}{r^3} \vec{r_{12}}$$

Gravitational force on object 2:

$$\vec{F_2} = -\vec{F_1} = -G_{eff} \frac{m_1 m_2}{r^3} \vec{r_{12}}$$

4. Vector Acceleration

Acceleration of object 1:

$$\vec{a_1} = \frac{\vec{F_1}}{m_1} = G_{eff} \frac{m_2}{r^3} \vec{r_{12}}$$

Acceleration of object 2:

$$\vec{a_2} = \frac{\vec{F_2}}{m_2} = -G_{eff} \frac{m_1}{r^3} \vec{r_{12}}$$

5. Component Form (2D)

For object 1:

$$a_{1x} = G_{eff} \frac{m_2(x_2-x_1)}{r^3}, \quad a_{1y} = G_{eff} \frac{m_2(y_2-y_1)}{r^3}$$

For object 2:

$$a_{2x} = G_{eff} \frac{m_1(x_1-x_2)}{r^3}, \quad a_{2y} = G_{eff} \frac{m_1(y_1-y_2)}{r^3}$$

6. Entanglement Factor

Effective gravitational constant:

$$G_{eff} = G_0 \times \begin{cases} 1.0 & \text{if objects are entangled} \\ \alpha < 1 & \text{if objects are not entangled} \end{cases}$$

7. Circular Orbit Conditions

Orbital velocity:

$$v = \sqrt{\frac{G_{eff}(m_1 + m_2)}{d}}$$

Distances from barycenter:

$$r_1 = \frac{m_2 d}{m_1 + m_2}, \quad r_2 = \frac{m_1 d}{m_1 + m_2}$$

Individual velocities:

$$v_1 = v \frac{m_2}{m_1 + m_2}, \quad v_2 = v \frac{m_1}{m_1 + m_2}$$

Interactive Vector Simulation

Advanced two-body gravitational simulation with 4th-order Runge-Kutta integration and entanglement effects.

System Parameters

5.97
0.073
0.384
0.00

Simulation Settings

1.0
100

Controls

Entanglement Physics

1.0

Presets

Real-time Vector Data

2. Photon Splitting Mechanism

Introduction

Gravity emerges when photons split into correlated pairs, creating quantum correlations that manifest as attractive forces between regions where split photons are absorbed.

Photon Splitting Process:

$$\gamma(\hbar\omega) \rightarrow \gamma_1(\hbar\omega/2) + \gamma_2(\hbar\omega/2)$$

Correlation Creation Rate:

$$\Gamma_{split} = \frac{\alpha^2 c}{a_0} \cdot P_{split}$$

where $P_{split} \sim \frac{\hbar}{E_{photon} \tau_{split}}$

Mathematical Development

Step 1: Hydrogen atom photon emission rate

$$\Gamma = \frac{\alpha^2 c}{a_0} = 6.27 \times 10^8 \text{ s}^{-1}$$

Step 2: Splitting probability per photon

$$P_{split} = \frac{\hbar}{E_{photon}} \cdot \frac{1}{\tau_{Planck}} \sim 10^{-43}$$

Step 3: Correlation density in space

$$n_{corr}(r) = \frac{N_1 N_2}{4\pi r^2} \cdot \Gamma^2 \cdot P_{split}^2 \cdot \tau_{coherence}$$

Step 4: Gravitational constant derivation

$$G = \frac{\hbar^2 c}{\ell_P^2 m_H^2 m_e a_0} \cdot f(\alpha) \approx 6.67 \times 10^{-11} \text{ m}^3\text{kg}^{-1}\text{s}^{-2}$$

Interactive Simulation

50 eV 1e-42

Future Directions

Laboratory Tests:

  • High-intensity laser experiments to detect photon splitting correlations
  • Measurement of gravitational coupling changes in electromagnetic fields
  • Investigation of vacuum birefringence effects

Mathematical Extensions:

$$\frac{d^2G}{dt^2} = \frac{\partial}{\partial t}\left(\frac{\hbar \Gamma_{split}}{m_H^2 c}\right)$$

3. Gravitational Privacy

Introduction

Matter from different primordial origins may be gravitationally "private" - lacking mutual attraction while maintaining self-attraction within each family.

Entanglement Family Classification:

$$G_{AB} = G_0 \cdot \delta_{family(A),family(B)}$$

Mixed Material Test:

$$F_{net} = \sum_{i \in A, j \in A} F_{ij} + \sum_{i \in B, j \in B} F_{ij} + \underbrace{\sum_{i \in A, j \in B} 0}_{no\ cross\ attraction}$$

Mathematical Development

Step 1: Define entanglement genealogy function

$$\mathcal{E}(A,B) = \begin{cases} 1 & \text{if A and B share primordial origin} \\ 0 & \text{if A and B from different origins} \end{cases}$$

Step 2: Gravitational coupling matrix

$$G_{ij} = G_0 \sqrt{\mathcal{E}(i,family) \cdot \mathcal{E}(j,family)}$$

Step 3: Mixing separation prediction

If materials A and B are mixed, separation time scale:

$$\tau_{sep} = \sqrt{\frac{6\pi\eta r^3}{G_0 \rho_{self} m_{particle}}}$$

Step 4: Observable consequences

$$\frac{d\vec{r}_{AB}}{dt^2} = \mathcal{E}(A,B) \cdot G \frac{M_A M_B}{|\vec{r}_{AB}|^3}\vec{r}_{AB}$$

Interactive Simulation

15 15 Disabled

Future Directions

Cosmological Observations:

  • Search for gravitationally isolated galaxy clusters
  • Analysis of large-scale structure formation patterns
  • Investigation of cosmic void properties

Theoretical Implications:

$$S_{universe} = \sum_{families} S_{family} + \underbrace{0}_{no\ cross\ correlations}$$

4. Galaxy-Scale Effects

Introduction

At galactic scales, gravitational privacy could explain dark matter effects. Galaxies from different entanglement families would appear to have missing gravitational interactions.

Apparent Missing Mass:

$$M_{missing} = M_{total} \cdot (1 - \mathcal{E}_{cross})$$

Galaxy Collision Dynamics:

$$\vec{F}_{galaxy1 \rightarrow galaxy2} = \mathcal{E}(g1,g2) \cdot G \frac{M_1 M_2}{r^2}\hat{r}$$

Mathematical Development

Step 1: Observational velocity dispersion

$$\sigma_v^2 = \frac{GM_{visible}}{R} \cdot f_{entanglement}$$

where $f_{entanglement} < 1$ for mixed galaxy clusters

Step 2: Dark matter interpretation

$$M_{dark} = M_{visible} \cdot \left(\frac{1}{f_{entanglement}} - 1\right)$$

Step 3: Collision cross-section

$$\sigma_{collision} = \pi R^2 \cdot \mathcal{E}(galaxy1, galaxy2)$$

Step 4: Large-scale structure prediction

$$\xi(r) = \xi_0 \left(\frac{r}{r_0}\right)^{-\gamma} \cdot \langle\mathcal{E}\rangle_{families}$$

Interactive Simulation

6 2 Enabled

Future Directions

Observational Targets:

  • Asymmetric galaxy cluster mergers (Bullet Cluster reanalysis)
  • Gravitational lensing discrepancies
  • Cosmic web connectivity patterns

Modified Dynamics:

$$\frac{d^2\vec{r}}{dt^2} = -\nabla\Phi_{visible} - \nabla\Phi_{entangled}$$

where $\Phi_{entangled}$ only couples to same-family matter

5. Primordial Photon Soup

Introduction

In the early universe, all matter existed as photons in thermal equilibrium. This creates a universal entanglement ancestry for all matter within our cosmic horizon, explaining local gravitational universality.

Photon-Matter Transition:

$$\gamma + \gamma \leftrightarrow e^+ + e^- \text{ at } T > 10^{10} \text{ K}$$

Entanglement Inheritance:

$$S_{matter}(t) = S_{photons}(t_0) \cdot \eta_{conservation}$$

Horizon-Limited Entanglement:

$$\mathcal{E}(A,B) = \Theta(c \cdot t_{universe} - |\vec{r}_A - \vec{r}_B|)$$

Mathematical Development

Step 1: Photon number density in early universe

$$n_\gamma = \frac{2\zeta(3)}{\pi^2} \left(\frac{k_B T}{\hbar c}\right)^3 \approx 20 \left(\frac{T}{2.7K}\right)^3 \text{ cm}^{-3}$$

Step 2: Entanglement entropy per photon

$$S_{photon} = k_B \ln(\text{accessible states}) = k_B \ln\left(\frac{4\pi c^3}{3h^3}t^3\right)$$

Step 3: Matter condensation preserves correlations

$$\rho_{corr,matter} = \rho_{corr,photons} \cdot \frac{\eta_{baryon}}{n_\gamma} \cdot f_{preservation}$$

Step 4: Gravitational constant from primordial entropy

$$G = \frac{\hbar c^3}{M_P^2} \cdot \frac{S_{primordial}}{k_B N_{horizon}}$$

Interactive Simulation

6.9 billion years 2.7 K 3

Future Directions

Cosmological Predictions:

  • CMB polarization patterns from entanglement boundaries
  • Primordial gravitational wave signatures
  • Big Bang nucleosynthesis modifications

Fundamental Physics:

$$H^2 = \frac{8\pi G}{3}\rho_{total} \cdot \langle\mathcal{E}^2\rangle_{cosmic}$$

where entanglement affects the expansion rate itself